Ollama-python项目中使用raw模式传递多模态图像的技术解析
2025-05-30 02:52:14作者:卓艾滢Kingsley
背景介绍
Ollama-python是一个用于与Ollama模型交互的Python客户端库。在最新版本中,它支持了多模态模型(如llama3.2-vision)的图像处理能力。然而,当开发者尝试使用raw模式(即绕过默认模板直接发送原始提示)时,发现图像数据无法正确传递给模型,导致模型无法识别图像内容。
问题本质
在多模态模型处理中,图像数据需要以特定格式嵌入到提示中。当使用raw=True参数时,Ollama-python默认不会自动添加必要的图像标记,导致模型无法识别图像数据。这与非raw模式下的行为不同,后者会自动处理图像嵌入。
技术解决方案
临时解决方案
开发者发现可以通过手动在raw提示中添加图像标记来解决此问题。具体格式为"[img-N]",其中N对应images数组中的索引。例如:
prompt = "[img-0]<image>请描述这张图片的内容"
response = ollama.generate(
model="llama3.2-vision",
prompt=prompt,
raw=True,
images=[image_bytes]
)
这种方法虽然有效,但需要开发者手动处理图像标记,不够优雅。
官方改进方案
在深入分析Ollama的Go代码后,发现问题的根源在于:
- 图像预处理始终执行
- 但图像模板字段只在raw=False时添加
为此,提出了两种改进方案:
- 新增_add_images_to_prompt参数,让开发者选择是否自动添加图像标记
- 修改底层逻辑,使raw模式也能正确处理图像
最佳实践建议
对于当前版本的用户,建议采用以下工作流程:
- 对于简单图像识别任务,优先使用chat接口:
response = ollama.chat(
model='llama3.2-vision',
messages=[{
'role': 'user',
'content': '图片内容是什么?',
'images': ['image.jpg']
}]
)
- 需要精确控制输出格式时,使用raw模式并手动添加图像标记:
custom_prompt = """<|begin_of_text|>...你的自定义提示...[img-0]<image>..."""
- 对于结构化数据提取,考虑两阶段处理:
- 第一阶段:图像识别
- 第二阶段:格式转换
未来展望
Ollama团队已确认这是当前设计的预期行为,但表示未来可能会改进提示模板系统。开发者可以期待更灵活的多模态处理方式,特别是对于需要精确控制输出格式的场景。
技术要点总结
- raw模式不会自动处理图像嵌入
- 手动添加"[img-N]
"标记是当前解决方案
- 多阶段处理可能是复杂任务的更好选择
- 关注官方更新以获取更优雅的解决方案
通过理解这些技术细节,开发者可以更有效地利用Ollama-python的多模态能力,特别是在需要自定义提示的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218