TTT-Video-DIT项目训练全流程详解
项目概述
TTT-Video-DIT是一个基于视频生成模型的训练框架,采用分阶段课程学习策略,能够高效训练长视频生成模型。该项目从预训练模型CogVideoX出发,通过渐进式增加视频长度的训练方式,最终能够生成长达63秒的高质量视频内容。
训练阶段详解
五阶段课程学习
项目采用精心设计的五阶段训练策略,逐步增加视频长度:
- 3秒阶段:与预训练模型保持一致,作为训练起点
- 9秒阶段:扩展至中等长度视频
- 18秒阶段:进一步增加视频时长
- 30秒阶段:接近短视频长度
- 63秒阶段:最终目标长度
这种渐进式训练策略有效解决了直接训练长视频带来的内存和计算难题。
参数训练策略
- 第一阶段(3秒):采用全参数微调(SFT),所有模型参数均可训练
- 后续阶段:仅训练TTT参数和QVKO投影层(用于局部注意力机制)
这种策略既保证了模型性能,又显著降低了训练成本。开发者可以根据实际需求,在达到目标视频长度后提前终止训练。
模型初始化与加载
权重转换
项目从CogVideoX 5B预训练模型出发,提供了权重转换脚本,将原始模型权重转换为项目所需格式。转换后的权重将作为3秒训练阶段的起点。
技术细节:项目使用PyTorch的meta初始化机制配合FSDP和TP技术,确保模型参数能正确地在目标设备上初始化。
检查点加载
每个训练阶段都需要指定初始模型权重路径:
- 3秒阶段:使用转换后的预训练权重
- 后续阶段:使用前一阶段训练完成后的最终检查点
通过checkpoint.init_state_dir配置项指定权重路径,确保训练连续性。
训练任务启动
配置文件管理
项目预定义了各阶段的训练配置文件(位于configs/train目录),开发者只需:
- 选择对应阶段的配置文件
- 设置必要的路径参数:
- 模型初始权重路径
- 数据集目录路径
- 数据集元数据文件路径
运行环境选择
- 单节点测试运行:适合本地开发和调试
- 多节点完整训练:通过Slurm和submitit实现分布式训练
项目内置了自动恢复、检查点保存和日志记录功能,确保长时间训练的稳定性。
重要提示:使用自动恢复功能时,保持任务名称不变是关键,系统依赖任务名称查找对应检查点。
高级优化技术
分布式训练策略
项目采用多种并行技术解决长视频训练的内存挑战:
-
HSDP(混合分片数据并行):
- 节点内分片模型参数
- 跨节点复制模型参数
- 通过
parallelism.dp_sharding和parallelism.dp_replicate配置
-
TP(张量并行):
- 将运算和内存需求分布到多个设备
- 通过
parallelism.tp_sharding配置
设备网格计算:确保
dp_replicate * dp_sharding * tp_sharding等于使用的GPU总数。
混合精度训练
采用bfloat16混合精度策略:
- 前向传播和计算使用bfloat16
- 梯度归约使用float32
- 平衡了内存效率与数值稳定性
梯度检查点技术
通过重计算机制大幅降低内存需求:
- 仅保存关键激活值
- 反向传播时按需重新计算中间结果
- 通过
remat配置项控制重计算范围
数据预处理优化
预先计算视频和文本嵌入:
- 减少训练时VAE和T5模型的内存占用
- 避免重复计算嵌入
- 显著提升训练效率
总结
TTT-Video-DIT项目通过创新的五阶段课程学习策略和先进的分布式训练技术,成功解决了长视频生成的训练难题。开发者可以根据实际需求灵活调整训练流程,利用项目提供的优化技术,在合理资源消耗下获得高质量的长时间视频生成能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00