Elastic4s项目中KNN查询功能缺失inner_hits字段支持的分析
2025-07-10 09:55:48作者:胡易黎Nicole
在Elasticsearch的查询功能中,inner_hits是一个非常有用的特性,它允许开发者在嵌套查询或父子文档查询中获取匹配的内部文档信息。然而,在elastic4s这个Scala编写的Elasticsearch客户端中,其KNN(K-Nearest Neighbors)查询实现目前缺少对inner_hits字段的支持。
inner_hits字段的作用
inner_hits主要用于以下场景:
- 嵌套查询中获取匹配的子文档
- 父子文档关系中获取匹配的子文档
- 控制返回的内部文档字段
- 优化查询性能(通过限制返回字段)
在典型的向量搜索场景中,inner_hits特别有用,因为它允许开发者只返回匹配文档的特定字段(如向量字段本身),而不是整个文档内容。
elastic4s中KNN查询的实现现状
elastic4s目前提供的KNN查询功能是基于Elasticsearch的kNN搜索API构建的。从issue描述来看,当前实现缺少对inner_hits参数的支持,这意味着:
- 无法在KNN查询中控制返回的内部文档字段
- 必须返回整个文档内容,可能影响查询性能
- 无法精细控制嵌套文档的返回结果
技术影响分析
缺少inner_hits支持会带来以下技术限制:
-
性能问题:当文档包含大量字段时,无法通过inner_hits限制返回字段,导致不必要的网络传输和处理开销。
-
功能限制:在嵌套文档结构的向量搜索场景中,无法精确获取匹配的子文档信息。
-
一致性缺失:与其他查询类型相比,KNN查询缺少这一标准功能,导致API使用不一致。
解决方案建议
从项目提交记录来看,这个问题已经被修复。修复方案主要包括:
- 在KNN查询构建器中添加inner_hits字段支持
- 确保inner_hits的配置能够正确转换为Elasticsearch的查询DSL
- 保持与其他查询类型一致的API设计
开发者现在可以像使用其他查询类型一样,在KNN查询中使用inner_hits参数,例如:
knnQuery(
field = "vector_field",
queryVector = Array(1.0f, 2.0f, 3.0f),
k = 10,
numCandidates = 100
).innerHits(
InnerHit().fetchSource(false).fields("passages.text")
)
最佳实践
在使用elastic4s的KNN查询时,建议:
- 对于大型文档,总是使用inner_hits限制返回字段
- 在嵌套文档结构中,利用inner_hits精确获取需要的子文档信息
- 考虑查询性能,避免返回不必要的大字段(如原始文本或大向量)
这个改进使得elastic4s的KNN查询功能更加完善,为开发者提供了更大的灵活性和更好的性能优化空间。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137