Super-Gradients项目中ONNX模型批量预测的支持现状
2025-06-11 15:46:03作者:尤峻淳Whitney
在深度学习模型部署过程中,将PyTorch模型导出为ONNX格式是一个常见需求。本文基于Super-Gradients项目中的一个实际案例,探讨了使用该框架导出支持批量预测的ONNX模型的相关技术细节。
模型导出基础流程
Super-Gradients提供了便捷的模型导出功能。以PP-YOLOE_L模型为例,用户可以通过以下代码将训练好的模型导出为ONNX格式:
best_model = models.get(
model_name=Models.PP_YOLOE_L,
num_classes=8,
checkpoint_path="yolox/pp_long_run_filtered_classes/RUN_20240412_081806_035870/average_model.pth"
)
export_result = best_model.export("pp_yolo.onnx", input_image_shape=(640,640), confidence_threshold=0.75)
这段代码会生成一个输入形状为[1, 3, 640, 640]的ONNX模型,其中1表示批处理大小(batch size),3表示RGB三个通道,640x640是输入图像的分辨率。
批量预测需求与限制
在实际生产环境中,我们通常需要对多个图像进行批量预测以提高推理效率。理想情况下,模型应该支持[N, 3, 640, 640]的输入形状,其中N是批处理大小。
当前Super-Gradients的模型导出功能确实支持通过batch_size参数显式指定批处理大小。例如:
export_result = best_model.export("pp_yolo.onnx",
input_image_shape=(640,640),
confidence_threshold=0.75,
batch_size=4)
这将生成一个支持批处理大小为4的ONNX模型。
动态批处理支持现状
关于动态批处理(即允许N在运行时变化),目前Super-Gradients框架尚未提供原生支持。这是一个已知的功能限制,项目团队表示欢迎社区贡献来实现这一特性。
技术实现建议
对于需要动态批处理的场景,开发者可以考虑以下替代方案:
- 模型修改:手动修改导出的ONNX模型,将固定批处理维度改为动态维度
- 分批处理:在应用层实现分批逻辑,将大批次拆分为模型支持的小批次
- 自定义导出:扩展Super-Gradients的导出功能,添加动态维度支持
总结
Super-Gradients为模型导出提供了便捷的接口,但目前对动态批处理的支持有限。开发者需要根据实际需求选择固定批处理大小或实现自定义解决方案。随着项目的持续发展,这一功能限制有望在未来版本中得到解决。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249