在Camel项目中实现KnowNo框架增强AI决策可靠性
2025-05-19 09:14:22作者:凤尚柏Louis
引言
在人工智能领域,大型语言模型和机器人系统经常面临一个关键挑战:在不确定情况下仍会做出过度自信的错误预测。这一现象在动态和陌生环境中尤为明显。来自普林斯顿大学和Google DeepMind的研究团队提出的KnowNo框架为解决这一问题提供了创新思路。
KnowNo框架核心思想
KnowNo框架基于"共形预测"(Conformal Prediction)理论,主要包含三个关键步骤:
- 多可能性生成:利用模型(特别是推理模型)生成多个可能的下一步行动方案
- 可信度评估:为每个可能的选项分配概率或可信度评分
- 阈值决策:将选项的可信度与预设阈值比较,决定是自主执行还是请求人工干预
Camel项目中的实现方案
在Camel项目中,我们可以通过扩展Agent的功能来实现这一框架。具体实现思路包括:
基础实现方式
最直接的实现是在ChatAgent类中新增step_with_reasoning方法,该方法接受三个关键参数:
- 任务描述
- 生成选项数量(choices)
- 可信度阈值(threshold)
工作流程示例:
agent.step_with_reasoning(
"世界上最好的足球运动员是谁?请介绍他的职业生涯",
choices=3,
threshold=0.5
)
内部处理逻辑
- 模型生成多个候选答案(如梅西、C罗、内马尔)
- 为每个选项分配可信度评分(如梅西0.42,C罗0.38,内马尔0.2)
- 检查是否有选项超过阈值
- 若无达标选项,则通过控制台请求人工输入
- 根据用户选择继续执行任务
架构设计考量
虽然初期可以在ChatAgent内部实现,但从长期架构设计角度考虑:
- 建议未来将这一功能独立为专门的Agent子类,保持代码模块化
- 可信度评分机制应设计为可插拔接口,便于未来集成更多评估方法
- 人工干预接口应抽象化,支持多种交互方式(控制台、GUI、API等)
技术挑战与解决方案
可信度评分生成
当前主要依赖语言模型自身的推理能力生成概率分布,这种方法存在一定局限性。未来可探索的增强方案包括:
- 结合规则引擎进行交叉验证
- 引入外部知识库验证
- 使用集成模型投票机制
- 历史决策正确率反馈
性能优化
多候选生成和评估会增加计算开销,可能的优化方向:
- 候选答案数量动态调整
- 可信度评估与生成过程合并
- 缓存高频决策结果
应用场景扩展
这一框架不仅适用于问答系统,还可应用于:
- 机器人任务规划
- 自动化决策系统
- 风险敏感应用(如医疗、金融)
- 教育领域的智能辅导
总结
在Camel项目中实现KnowNo框架将显著提升AI系统在不确定性环境中的决策可靠性。通过分阶段实施和模块化设计,可以在保持系统简洁性的同时,为未来功能扩展预留充足空间。这一特性的加入将使Camel项目在AI安全性和实用性方面迈出重要一步。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136