Label Studio中结合目标检测与关键点标注的技术实践
前言
在计算机视觉领域,目标检测和关键点检测是两个密切相关但又各具特点的任务。目标检测用于定位图像中的物体并绘制边界框,而关键点检测则用于识别物体内部的特定特征点。在实际应用中,经常需要同时完成这两类标注任务。本文将详细介绍如何在Label Studio这一流行的数据标注平台中实现二者的结合使用。
基础配置方法
在Label Studio中同时配置目标检测和关键点标注相对简单。核心思路是在同一个标注模板中同时包含RectangleLabels
和KeyPointLabels
两个标签组件,并确保它们都指向同一个图像源。
一个典型的基础配置示例如下:
<View>
<Image name="image" value="$image"/>
<RectangleLabels name="bbox" toName="image">
<Label value="Person" background="blue"/>
<Label value="Car" background="green"/>
</RectangleLabels>
<KeyPointLabels name="kp" toName="image">
<Label value="Nose" background="red"/>
<Label value="Eye" background="yellow"/>
</KeyPointLabels>
</View>
这种配置允许标注人员在同一个界面中完成两种标注任务,大大提高了工作效率。
结合机器学习预测的进阶应用
在实际项目中,我们常常希望利用已有的机器学习模型来辅助标注工作。例如,使用目标检测模型自动生成边界框,然后人工添加关键点标注。这种半自动化的流程可以显著提升标注效率。
预测结果分组机制
Label Studio通过"分组"(group)机制来实现不同标注类型之间的关联。当ML后端同时返回边界框和关键点预测时,如果它们共享相同的分组ID,Label Studio会自动将它们关联在一起。
一个完整的预测结果示例应该包含:
{
"result": [
{
"type": "rectanglelabels",
"value": {
"x": 10, "y": 20, "width": 30, "height": 40,
"rectanglelabels": ["Person"]
},
"group": "person_1"
},
{
"type": "keypointlabels",
"value": {
"x": 25, "y": 30,
"keypointlabels": ["Nose"]
},
"group": "person_1"
}
]
}
常见问题与解决方案
在实际应用中,可能会遇到以下典型问题:
-
关键点无法添加到预测的边界框内:这通常是因为预测结果缺少分组信息,导致系统无法建立关联。解决方案是确保ML后端返回的结果中包含正确的分组ID。
-
手动添加的关键点不与自动生成的边界框关联:Label Studio目前的设计是手动添加的标注不会自动与预测结果关联。可以通过以下方式解决:
- 修改ML后端使其同时返回两种预测
- 使用Label Studio SDK编写后处理脚本进行关联
- 接受这种分离状态,在后续数据处理阶段再进行关联
-
界面显示异常:有时候关键点可能显示在边界框之外。这通常是由于坐标计算问题导致的,可以检查:
- 预测结果的坐标是否基于相同的坐标系
- 图像尺寸是否一致
- 是否有缩放或旋转等变换影响了位置关系
最佳实践建议
基于实际项目经验,我们总结出以下最佳实践:
-
统一坐标系统:确保所有预测结果使用相同的坐标基准,通常建议使用相对于图像宽高的百分比坐标。
-
合理设置置信度阈值:对于目标检测和关键点检测都设置适当的置信度阈值,避免低质量预测干扰标注工作。
-
分层标注策略:对于复杂场景,可以考虑先完成所有目标检测,然后再进行关键点标注,避免同时处理过多信息。
-
质量控制机制:建立定期检查机制,特别是对自动预测结果的准确性进行抽样验证。
-
文档记录:详细记录标注规范和特殊情况的处理方式,确保团队内部的一致性。
总结
Label Studio为结合目标检测和关键点标注提供了灵活的支持。通过合理配置标注模板和正确使用ML后端,可以构建高效的半自动化标注流程。虽然在某些特定场景下可能存在一些限制,但通过本文介绍的方法和技巧,大多数问题都可以得到有效解决。
对于需要同时进行多类型标注的项目,建议在项目开始前进行充分的技术验证,确保所选择的方案能够满足实际需求。同时,也要根据项目进展不断优化标注流程,以达到质量和效率的最佳平衡。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0320- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









