Apache Blinky 项目技术文档
2024-12-23 02:24:46作者:齐添朝
1. 安装指南
1.1 下载并安装 Apache Newt
要开始使用 Apache Blinky 项目,首先需要下载并安装 Apache Newt 工具。Apache Newt 是一个用于管理 Apache Mynewt 项目的工具。安装步骤如下:
- 访问 Apache Mynewt 官方网站 获取最新的安装指南。
- 根据指南中的说明,下载并安装 Apache Newt 工具。
1.2 下载 Apache Mynewt Core 包
安装完成后,进入 Apache Blinky 项目的根目录,执行以下命令下载 Apache Mynewt Core 包:
$ newt install
2. 项目使用说明
2.1 构建 blinky 应用
Apache Blinky 项目包含一个名为 blinky 的示例应用程序。该应用程序可以在支持的硬件上运行,并反复闪烁 LED。以下是构建 blinky 应用的步骤:
- 进入 blinky 项目的根目录。
- 使用以下命令为模拟平台构建 blinky 应用:
$ newt build my_blinky_sim
构建完成后,Apache Newt 工具将指示生成的 blinky 可执行文件的位置。由于模拟器没有 LED,因此此版本的 blinky 不会实际闪烁 LED,而是打印当前 LED 状态的消息。
2.2 构建 blinky 应用以在实际硬件上运行
如果希望在实际硬件上运行 blinky 应用,请参考 Apache Mynewt 官方网站 中的详细指南。
3. 项目 API 使用文档
3.1 概述
Apache Blinky 项目提供了一个简单的 API,用于控制 LED 的闪烁。该 API 主要用于演示如何在 Apache Mynewt 项目中创建和使用应用程序。
3.2 API 函数
void blinky_init(void):初始化 blinky 应用程序。void blinky_run(void):运行 blinky 应用程序,控制 LED 的闪烁。
3.3 示例代码
以下是一个简单的示例代码,展示了如何使用 blinky API:
#include "blinky.h"
int main(void) {
blinky_init();
blinky_run();
return 0;
}
4. 项目安装方式
4.1 使用 Apache Newt 创建新项目
Apache Blinky 项目可以通过 Apache Newt 工具快速创建。以下是创建新项目的步骤:
- 打开终端并运行以下命令:
$ newt new my_blinky_project
- 进入新创建的项目目录:
$ cd my_blinky_project
- 按照上述安装指南中的步骤,下载并安装 Apache Mynewt Core 包。
通过以上步骤,您可以快速创建并开始使用 Apache Blinky 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
340
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
266
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
668
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
45
32