Rakudo 2025.03版本发布:Raku语言实现的重要更新
Rakudo作为Raku语言的主要实现之一,在2025年3月发布了第181个版本(2025.03)。这个版本带来了多项改进、修复和新功能,进一步提升了Raku语言的开发体验和运行效率。
Raku是一种多范式编程语言,它继承了Perl的许多优秀特性,同时引入了现代化的编程概念。Rakudo则是Raku语言的参考实现,使用NQP(Not Quite Perl)工具链构建,支持MoarVM和JVM后端。
核心改进与优化
本次发布的2025.03版本在多个方面进行了优化:
-
REPL环境增强:现在REPL中可以正确保持语法修改,并支持多行注释,大大改善了交互式开发体验。
-
性能优化:对预编译文件的字节码部分进行了8字节对齐处理,这可以提升某些架构上的内存访问效率。
-
类型系统增强:允许使用Mu:U作为Mu的同义词进行签名测试,增加了类型检查的灵活性。
-
内存报告改进:内存初始值显示现在使用下划线分隔千位数,提高了可读性。
-
Hash参数化扩展:对Hash类型的参数化处理进行了统一和扩展,使Hash/::Typed/::Object能够采用相同的参数化方式。
新增功能特性
2025.03版本引入了一些实用的新功能:
-
Range方法增强:为Range类型添加了min/max方法,支持:k、:kv和:p等命名参数,提供了更多获取范围极值的方式。
-
类型对象比较:新增了===操作符对类型对象的支持,完善了类型系统的比较操作。
-
错误处理增强:添加了多个新的异常类型,包括参数顺序错误(X::Parameter::WrongOrder)、占位参数重声明、参数默认值类型检查失败(X::Parameter::Default::TypeCheck)等,使错误信息更加精确。
-
调试辅助:在数值未初始化警告中尽可能包含变量名,帮助开发者更快定位问题。
重要问题修复
本次发布修复了多个影响稳定性和正确性的问题:
-
签名处理修复:修正了带有参数化泛型类型的签名处理问题,确保类型系统的一致性。
-
对象构建流程:明确了BUILDALL和POPULATE之间的关系,减少了开发者在这方面的困惑。
-
Buf/Blob处理:修复了Buf和Blob类型的join/raku方法对无符号整数的处理问题。
-
属性检查:修复了一系列未声明属性检查的问题,提高了代码安全性。
-
方法调用:修复了.assuming方法产生类型化slurpy参数的问题,确保方法调用的正确性。
RakuAST开发进展
RakuAST作为Raku的新抽象语法树实现,在本版本中取得了显著进展:
- 共提交了293个相关变更
- 通过了143/153的基础测试(make test)
- 通过了1298/1355的规范测试(make spectest)
这些进展为未来Raku语言的语法树处理奠定了基础,将带来更好的编译时检查和元编程能力。
开发者体验改进
2025.03版本特别关注了开发者体验的提升:
-
错误提示增强:为MethodNotFound错误添加了关于!cursor_start的特殊提示,帮助语法开发者更快解决问题。
-
私有类命名:使用了更直观的"private"类名,减少了开发者的困惑。
-
闰秒处理:更新了闰秒日期添加逻辑,确保时间处理的准确性。
总结
Rakudo 2025.03版本在语言实现稳定性、开发者体验和功能完整性方面都取得了显著进步。这些改进使得Raku语言更适合用于构建复杂的应用程序,同时也降低了新手的入门门槛。
随着RakuAST的持续开发,我们可以期待未来版本会带来更强大的元编程能力和更高效的代码执行。对于现有用户来说,这个版本提供了平稳的升级路径;对于新用户而言,现在正是开始探索Raku语言强大功能的好时机。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00