BayesianOptimization库中约束优化问题的suggest函数行为解析
2025-05-28 09:10:07作者:温玫谨Lighthearted
问题背景
在使用BayesianOptimization库进行带约束的贝叶斯优化时,发现suggest函数的推荐点选择行为与预期不符。具体表现为在约束优化场景下,该函数似乎只考虑了采集函数的最大值,而忽略了约束条件的影响。
现象描述
在约束优化场景中,根据Gardner等人的理论(2014),suggest函数应该返回采集函数与约束满足概率的乘积(argmax(acquisition*p_constrain))的最大值点。然而实际观察发现:
- 采集函数的最大值点位于约束不满足区域
suggest函数仍然推荐了这个理论上不应该被选择的点- 可视化分析显示,采集函数与约束概率的乘积最大值点与实际推荐点不一致
问题根源
经过深入分析,发现问题出在以下两个方面:
- 版本兼容性问题:用户使用的是1.4.3版本,而该功能在1.5.0版本中得到了完善
- 目标值计算方式:在计算EI采集函数时,错误地使用了全局最大值(optimizer.space.target.max()),而实际上应该使用被允许区域内的最大值(optimizer._space._target_max())
解决方案
- 升级库版本:将BayesianOptimization库升级到1.5.0或更高版本
- 正确使用目标值:在计算采集函数时,确保使用被约束允许区域内的最大值
技术细节
在约束优化场景下,BayesianOptimization库的内部工作机制如下:
-
维护两个高斯过程模型:
- 主模型:建模目标函数
- 约束模型:建模约束条件满足概率
-
采集函数计算时:
- 对于EI等采集函数,使用被允许区域内的最佳目标值作为基准
- 最终推荐点是采集函数值与约束概率乘积的最大值点
-
版本差异:
- 1.4.3版本中相关功能实现不够完善
- 1.5.0版本明确区分了全局最佳值和约束允许区域内的最佳值
最佳实践建议
- 始终使用最新版本的BayesianOptimization库
- 在约束优化场景下,明确验证约束条件的处理是否正确
- 可视化分析时,确保采集函数计算使用的目标值基准正确
- 对于关键应用,建议通过实验验证优化器的行为是否符合预期
总结
BayesianOptimization库在约束优化方面的功能随着版本迭代不断完善。理解其内部工作机制,特别是目标值基准的选择和约束条件的处理方式,对于正确使用该库至关重要。通过版本升级和正确使用API,可以确保约束优化场景下的推荐点选择行为符合理论预期。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134