EasyEdit项目中SERAC顺序编辑问题的分析与解决
2025-07-03 10:09:22作者:尤峻淳Whitney
问题背景
在EasyEdit项目中使用SERAC方法进行顺序编辑时,研究人员发现了一个关键问题:当设置keep_original_weight=False进行顺序编辑时,self.alg.cache_inputs始终只保留一个条目,这不符合顺序编辑的预期行为。
问题分析
深入分析代码后发现,在SERAC实现中存在两个主要问题:
-
缓存更新问题:在顺序编辑过程中,虽然
new_model.cache_inputs会添加新的编辑条目并保留已编辑条目,但这些更新并未正确传递回self.alg.cache_inputs。这导致模型无法记住之前的编辑历史,每次只能处理最新的编辑请求。 -
内存管理问题:随着编辑次数的增加,系统会出现内存不足(OOM)的情况。这主要是因为在计算嵌入相似度时,SERAC会一次性计算所有嵌入,当编辑次数达到近百次时,就会耗尽GPU内存。
解决方案
针对上述问题,研究人员提出了有效的解决方案:
- 缓存更新修复:
if keep_original_weight:
self.alg.cache_labels = self.alg.cache_labels[-1:]
self.alg.cache_inputs = self.alg.cache_inputs[-1:]
else:
self.alg = new_model
self.alg.replacement.to(torch.device(f'cuda:{self.params.device}'))
self.alg.classifier.to(torch.device(f'cuda:{self.params.device}'))
gc.collect()
torch.cuda.empty_cache()
这段代码确保了在顺序编辑模式下,模型能够正确维护编辑历史缓存。
- 内存优化:
gc.collect()
torch.cuda.empty_cache()
添加内存清理操作可以有效缓解OOM问题,特别是在长时间运行多个编辑操作时。
技术影响
这个修复对于EasyEdit项目的SERAC实现具有重要意义:
- 使顺序编辑功能能够正常工作,模型可以记住并应用多个编辑操作
- 提高了系统的稳定性,减少了内存泄漏和OOM错误的发生
- 为大规模顺序编辑任务提供了更好的支持
未来改进方向
虽然当前解决方案有效,但仍有优化空间:
- 可以改进嵌入相似度计算方式,采用分批处理而非一次性计算所有嵌入
- 实现更智能的内存管理策略,自动根据可用资源调整计算方式
- 考虑引入缓存淘汰机制,在内存受限时自动清理不常用的编辑记录
这个问题的发现和解决展示了开源社区协作的力量,也提醒我们在实现复杂编辑系统时需要特别注意状态管理和资源优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134