Scweet 3.0版本发布:异步架构革新Twitter数据采集
Scweet作为一款专注于Twitter数据采集的开源工具,在3.0版本中迎来了重大架构升级。本次更新彻底重构了底层技术实现,为开发者带来了更高效、更稳定的数据采集体验。
架构革命:全面异步化设计
3.0版本最核心的改进是采用了全异步架构。传统同步请求模式下,每个网络请求都需要等待响应完成后才能继续执行,这在数据采集场景中会造成大量等待时间浪费。新版Scweet通过异步非阻塞IO实现了请求并行化,使得多个采集任务可以同时进行,显著提升了整体吞吐量。
异步架构带来的直接好处体现在三个方面:首先,单位时间内可以处理更多请求,数据采集速度得到质的飞跃;其次,系统资源利用率更高,相同硬件配置下可以承载更大规模的采集任务;最后,用户界面响应更加流畅,长时间运行时的稳定性也得到增强。
浏览器自动化升级:内置Chromium支持
过往版本中,用户需要手动配置ChromeDriver环境,这一过程常常成为新手用户的入门障碍。3.0版本通过集成Playwright等现代化浏览器自动化工具,实现了开箱即用的浏览器环境管理。
这一改进意味着:
- 自动下载和管理所需版本的Chromium浏览器
- 无需额外驱动配置,降低使用门槛
- 更精细的浏览器生命周期控制
- 跨平台一致性更好,在不同操作系统上表现一致
功能调整与未来规划
考虑到Twitter API政策变化和技术重构需求,3.0版本暂时移除了粉丝/关注列表采集功能。开发团队表示这属于临时性调整,将在后续版本中以更稳定的方式重新引入。当前版本更聚焦于核心内容采集场景的优化,特别适合学术研究和个人项目使用。
技术实现细节
在底层实现上,Scweet 3.0采用了现代Python异步生态中的关键技术:
- 使用asyncio作为异步事件循环基础
- 结合aiohttp处理高效HTTP请求
- 通过Playwright实现无头浏览器控制
- 采用新型选择器引擎提高元素定位准确性
这些技术组合使Scweet在保持易用性的同时,获得了企业级采集工具的性能表现。对于需要大规模Twitter数据的研究人员来说,3.0版本提供了更可靠的技术方案。
升级建议与兼容性
由于架构变动较大,从旧版本迁移时需要注意:
- 接口层有部分破坏性变更,需要调整调用方式
- 依赖项完全更新,建议使用虚拟环境
- 配置方式更简化,许多参数现在自动管理
- 错误处理机制更完善,提供了更详细的日志
对于新用户而言,3.0版本显著降低了学习曲线,基本实现了"pip安装即用"的体验目标。开发者可以更专注于业务逻辑,而不必纠结于环境配置等底层细节。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00