SecretFlow多线程执行PSI操作的问题分析与解决方案
2025-07-01 22:22:43作者:何举烈Damon
背景介绍
SecretFlow作为一款隐私计算框架,提供了多种安全多方计算功能,其中PSI(Private Set Intersection,隐私集合求交)是最常用的功能之一。在实际业务场景中,开发者可能会尝试通过多线程方式并行执行多个PSI操作以提高效率,但这种方式在SecretFlow中会遇到一些特殊问题。
问题现象
开发者在使用SecretFlow 1.11.0b1版本时,尝试通过Python的ThreadPoolExecutor创建线程池并行执行4个PSI操作,发现以下现象:
- PSI操作能够正常执行并输出结果文件
- 部分线程无法正常释放,表现为任务状态始终显示为未完成
- 无法释放的线程数量不固定,可能是1-4个中的任意数量
- 串行执行相同的PSI操作则可以顺利完成
问题原因分析
经过技术分析,这个问题源于SecretFlow中SPU设备的设计限制:
- SPU设备不支持并发PSI操作:SecretFlow的SPU设备在设计上不支持同时执行多个PSI操作,这是底层协议实现的安全限制
- 资源竞争:多个线程尝试同时使用同一个SPU设备时,会导致内部资源竞争,部分线程可能无法正确释放资源
- 端口冲突:当使用相同端口配置时,多个PSI操作会产生网络通信冲突
解决方案
虽然SPU设备不支持并发PSI操作,但可以通过以下方式实现类似功能:
方案一:串行执行PSI操作
对于大多数场景,SecretFlow的PSI实现已经高度优化,能够充分利用硬件资源。简单的串行执行可能比强行并行更高效:
# 串行执行示例
for params in params_list:
fun(*params)
方案二:多SPU实例并行
如果需要真正的并行执行,可以为每个线程创建独立的SPU实例,使用不同端口:
def create_spu_instance(port_offset):
cluster_def = {
"nodes": [
{"party": "server181", "address": f"000.000.00.00:{8560+port_offset}"},
{"party": "server182", "address": f"000.000.00.00:{8560+port_offset}"}
],
"runtime_config": {
"protocol": spu.spu_pb2.SEMI2K,
"field": spu.spu_pb2.FM128
}
}
return sf.SPU(cluster_def, link_desc={"connect_retry_times": 10, "connect_retry_interval_ms":1000})
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for i, params in enumerate(params_list):
spu_instance = create_spu_instance(i)
futures.append(executor.submit(fun, spu_instance, *params[1:]))
# 等待所有任务完成
concurrent.futures.wait(futures)
方案三:批量PSI操作
SecretFlow支持单次PSI操作处理多个文件,这通常比多次PSI操作更高效:
# 批量PSI示例
input_paths = {server181: [file1, file2, file3, file4], server182: [file1, file2, file3, file4]}
output_paths = {server181: [out1, out2, out3, out4], server182: [out1, out2, out3, out4]}
spu.psi(
keys={server181:["node"], server182:["node"]},
input_path=input_paths,
output_path=output_paths,
table_keys_duplicated={server181: True, server182: True},
receiver=server181
)
性能考虑
在选择并行方案时,需要考虑以下因素:
- 资源开销:每个SPU实例都会占用额外的内存和网络资源
- 网络带宽:并行PSI可能受限于网络带宽,反而降低整体性能
- CPU利用率:SecretFlow的PSI实现通常能有效利用多核CPU
- 数据规模:对于小数据集,并行带来的收益可能无法抵消额外开销
最佳实践建议
- 优先尝试使用内置的批量PSI功能
- 对于大规模数据,先测试串行执行的性能,确认是否真的需要并行
- 如果必须并行,确保每个SPU实例使用独立的端口配置
- 监控系统资源使用情况,避免过度并行导致性能下降
- 考虑使用进程级并行而非线程级并行,以避免Python GIL限制
总结
SecretFlow的SPU设备在设计上不支持并发PSI操作,这是出于安全和性能的考虑。开发者可以通过串行执行、多SPU实例或批量操作等方式实现业务需求。在实际应用中,应该根据数据规模、硬件配置和性能需求选择最适合的方案,而不是盲目追求并行化。对于大多数场景,SecretFlow内置的优化已经能够提供良好的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1