ST-LLM 项目亮点解析
2025-06-26 22:55:59作者:平淮齐Percy
项目基础介绍
ST-LLM(Spatial-Temporal Large Language Model)是一个用于交通预测的开源项目,旨在通过大语言模型技术对交通特征进行时间和空间上的预测。该项目基于论文《Spatial-Temporal Large Language Model for Traffic Prediction》的实现,通过参数扩展和大量预训练,提出了一个新的时空学习框架,用于改善交通预测的准确性。
项目代码目录及介绍
项目的代码目录结构清晰,主要包括以下几个部分:
README.md:项目介绍和说明文档。LICENSE.txt:项目许可证文件。ST-LLM.pdf:项目相关的论文文档。env_ubuntu.yaml:项目环境配置文件。gat.py、gcn.py、model_GAT_GPT.py、model_GCN_GPT.py、model_ST_LLM.py:项目的主要模型实现文件。pkl.py、ranger21.py、test.py、train.py、train_gcn.py、util.py、weight.py:项目辅助功能和工具文件。
项目亮点功能拆解
ST-LLM 的主要功能亮点包括:
- 时空嵌入:将每个位置的时间步长视为令牌,并设计了一种时空嵌入方法,用于学习这些令牌的空间位置和全局时间模式。
- 融合卷积:通过融合卷积将时空嵌入集成到每个令牌中,形成一个统一的时空表示。
- 部分冻结注意力策略:创新性地提出了一种部分冻结注意力策略,以适应大语言模型捕获全局时空依赖关系。
项目主要技术亮点拆解
ST-LLM 的技术亮点主要体现在以下几个方面:
- 模型架构:采用大语言模型的基本结构,通过参数扩展和预训练,提高了模型的泛化能力。
- 数据预处理:提供了预处理后的数据集,便于研究人员快速上手和使用。
- 训练效率:通过部分冻结注意力机制,提高了训练效率和模型性能。
- 预测能力:在真实交通数据集上的实验结果表明,ST-LLM 在少量样本和零样本预测场景下表现出色。
与同类项目对比的亮点
相较于同类项目,ST-LLM 的亮点包括:
- 创新性:采用了大语言模型进行交通预测,与传统的神经网络结构有所不同。
- 性能优越:实验证明,ST-LLM 在多种评估指标上优于现有主流模型。
- 泛化能力:在少量样本和零样本预测场景中,ST-LLM 的表现更加稳健。
- 社区支持:项目在 GitHub 上得到了广泛的关注和认可,具有一定的社区基础。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.66 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
310
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
745
180
Ascend Extension for PyTorch
Python
302
343
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882