dstack项目中的任务状态显示优化实践
在云计算和机器学习工作流管理工具dstack中,dstack ps命令是用户查看当前运行任务状态的重要工具。近期社区对该命令的输出格式进行了优化改进,使其更加清晰直观。本文将详细介绍这些优化内容及其技术实现。
原有问题分析
原版dstack ps命令存在几个明显的用户体验问题:
-
终止原因信息缺失:命令输出中不包含任务终止的具体原因,用户无法快速了解任务为何停止。
-
冗长输出问题:详细模式(
-v参数)的输出过于冗长且格式混乱,信息密度低。 -
空间利用不合理:保留列(RESERVATION)占用大量空间但多数情况下为空,造成显示空间浪费。
-
成本信息缺失:输出中缺少任务运行成本这一重要信息。
优化方案设计
针对上述问题,开发团队设计了以下优化方案:
1. 状态信息精简与美化
借鉴Docker的设计理念,对任务状态信息进行简化和美化处理:
STOPPED_BY_USER→stoppedINTERRUPTED_BY_NO_CAPACITY→spot interruptedALL_JOBS_DONE→doneCONTAINER_EXITED_WITH_ERROR→exited (number)FAILED_TO_START_DUE_TO_NO_CAPACITY→no capacity
这种转换既保留了关键信息,又显著减少了显示空间占用。
2. 列布局优化
重新设计了输出列的布局:
- 合并INSTANCE和RESERVATION列,格式为
<实例类型> (<保留代码>),若无保留代码则只显示实例类型 - 在详细模式(-v)下新增COST列显示任务成本
3. 详细模式改进
对详细模式进行了重新设计,使其输出更加结构化且易于阅读,同时确保关键信息突出显示。
技术实现要点
实现这些优化时主要考虑了以下技术点:
-
状态映射机制:建立了一套完整的终止状态到显示文本的映射系统,确保状态信息既简洁又准确。
-
自适应列宽:实现了动态列宽调整算法,根据终端宽度和内容自动优化显示布局。
-
成本计算集成:将成本计算模块与状态显示命令集成,确保成本信息准确可靠。
-
向后兼容:确保优化后的命令输出仍能被现有脚本和工具解析处理。
实际效果展示
优化后的命令输出更加紧凑且信息丰富:
vscode ssh (remote) cpu=12 mem=30GB instance-type $0.0496 stopped 4w ago
vscode ssh (remote) cpu=12 mem=30GB instance-type $0.0496 no capacity 4w ago
blue-mole nebius cpu=2 mem=8GB cpu-e2 $0.0496 done 1m ago
在详细模式下,额外显示成本等详细信息,同时保持格式整洁。
总结
dstack通过这次dstack ps命令的优化,显著提升了用户查看和管理任务时的体验。这种优化不仅涉及表面显示格式的改进,还包括底层信息架构的重新设计,体现了以用户为中心的设计理念。对于开发者而言,这种优化也展示了如何平衡信息密度与可读性,以及如何借鉴成熟工具(Docker)的优秀设计来改进自己的产品。
这些改进已被合并到主分支,用户可以通过更新到最新版dstack来体验这些优化。未来团队还计划进一步优化其他命令的输出格式,提供更加一致和高效的用户体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00