SageMaker Python SDK中ProcessingStep的正确使用方法
问题背景
在使用AWS SageMaker Python SDK构建机器学习流水线时,开发者经常会遇到ProcessingStep与ScriptProcessor结合使用时出现的配置错误。一个典型的错误场景是当开发者同时传递了processor和step_args参数给ProcessingStep构造函数时,系统会抛出ValueError: either step_args or processor need to be given, but not both异常。
错误原因分析
这个错误的核心在于对ProcessingStep构造函数的参数理解有误。ProcessingStep设计时要求开发者只能选择以下两种方式之一来定义处理步骤:
-
直接提供processor对象:这种情况下,开发者需要传递一个已配置好的processor实例(如ScriptProcessor),并在构造函数中指定其他必要参数。
-
提供step_args:这种情况下,开发者需要先调用processor的run方法生成执行参数,然后将这些参数传递给ProcessingStep。
同时使用这两种方式会导致系统无法确定应该采用哪种配置方式,因此会抛出异常。
正确使用方法
方法一:直接使用processor
from sagemaker.processing import ScriptProcessor, ProcessingStep
# 创建ScriptProcessor实例
script_processor = ScriptProcessor(
command=['python3'],
image_uri='your-image-uri',
role='your-role',
instance_count=1,
instance_type='ml.m5.xlarge'
)
# 直接在ProcessingStep中使用processor
finetune_step = ProcessingStep(
name="FinetuneStep",
processor=script_processor,
inputs=[...],
outputs=[...],
code="script.py",
arguments=['--param1', 'value1']
)
方法二:使用step_args
from sagemaker.processing import ScriptProcessor, ProcessingStep
# 创建ScriptProcessor实例
script_processor = ScriptProcessor(
command=['python3'],
image_uri='your-image-uri',
role='your-role',
instance_count=1,
instance_type='ml.m5.xlarge'
)
# 先生成step_args
step_args = script_processor.run(
code="script.py",
arguments=['--param1', 'value1'],
inputs=[...],
outputs=[...]
)
# 在ProcessingStep中使用step_args
finetune_step = ProcessingStep(
name="FinetuneStep",
step_args=step_args
)
常见问题解决方案
-
Session配置问题:确保在创建processor时正确传递了pipeline session作为sagemaker session参数。这是开发者经常忽略的一个关键点。
-
参数冲突问题:检查是否在step_args和ProcessingStep构造函数中重复定义了相同的参数,如inputs/outputs等。
-
版本兼容性问题:确保使用的SageMaker Python SDK版本与文档示例版本一致,不同版本间API可能有细微差别。
最佳实践建议
-
一致性原则:在一个项目中统一采用一种配置方式(要么全部使用processor,要么全部使用step_args),避免混用导致维护困难。
-
参数验证:在创建ProcessingStep前,打印或检查step_args的内容,确保包含了所有必要的执行参数。
-
错误处理:在流水线定义代码周围添加适当的异常捕获和处理逻辑,便于快速定位配置问题。
-
文档参考:定期查阅最新版SDK文档,了解API变更和新增功能。
通过理解这些原理和遵循最佳实践,开发者可以更高效地构建可靠的SageMaker机器学习流水线,避免常见的配置错误。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00