Pagy:轻量级且高效的Ruby分页库
项目介绍
Pagy 是一个极其高效且功能全面的 Ruby 分页宝石,旨在解决大数据集的分页需求。与其他流行的分页工具如 WillPaginate 和 Kaminari 相比,它在性能上表现出色,消耗的资源远少。它支持 Rack 框架(包括 Rails、Sinatra 和 Padrino 等)以及纯 Ruby 环境,并能适应任何ORM、数据库或搜索库。Pagy 提供了对多种CSS框架的支持,如 Bootstrap,以及针对特殊场景的扩展,比如集成Elasticsearch。
项目快速启动
要开始使用 Pagy,首先确保你的环境中已经安装了 Ruby,并且通过以下命令添加 Pagy 到你的 Gemfile 中:
gem 'pagy'
之后,执行 bundle install 来安装。接下来,在你的应用程序中初始化 Pagy 并进行基本分页。以 Rails 应用为例,假设你想对产品列表进行分页:
# 在控制器中
def index
@pagy, @products = pagy(Product.all)
end
# 在视图中
<%== pagy_nav(@pagy) if @pagy.pages > 1 %>
<ul>
<%= @products.each do |product| %>
<li><%= product.name %></li>
<% end %>
</ul>
如果你想使用 Bootstrap 样式的导航,只需在初始化时加入对应的额外组件:
require 'pagy/extras/bootstrap'
并在视图中使用 pagy_bootstrap_nav(@pagy) 替换普通导航。
应用案例和最佳实践
Keyset Pagination
对于处理大量数据,采用 Keyset Pagination 是一种明智的选择,Pagy 自版本9.0起提供了这一特性,尤其适用于大数据集合的高效率滚动。这避免了传统的基于偏移量的分页带来的性能瓶颈。
# 假设我们有一个排序条件
@pagy, @products = pagy(Product.order(:created_at), vars: [:sort])
无计数分页(Countless)
当你处理的数据集合极大以至于计算总数变得昂贵时,可以利用 Pagy::Countless 特性。
典型生态项目
Pagy 的生态系统允许与各种环境和库无缝集成,例如 Elasticsearch:
require 'pagy/extras/elasticsearch_rails'
extend Pagy::ElasticsearchRails
def search
response = Article.search(params[:query], page: pagy_page, per_page: pagy_items)
@pagy, @articles = pagy_elasticsearch_rails(response)
end
此外,Pagy 还支持客户端分页、无限滚动等现代交互模式,通过提供 JavaScript 辅助方法和示例,使开发者能够轻松实现这些高级功能。
以上就是关于 Pagy 的简明快速入门及一些进阶实践概览。深入探索其详细文档,将帮助你充分利用这个高效分页解决方案来优化你的应用程序。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00