Pagy:轻量级且高效的Ruby分页库
项目介绍
Pagy 是一个极其高效且功能全面的 Ruby 分页宝石,旨在解决大数据集的分页需求。与其他流行的分页工具如 WillPaginate 和 Kaminari 相比,它在性能上表现出色,消耗的资源远少。它支持 Rack 框架(包括 Rails、Sinatra 和 Padrino 等)以及纯 Ruby 环境,并能适应任何ORM、数据库或搜索库。Pagy 提供了对多种CSS框架的支持,如 Bootstrap,以及针对特殊场景的扩展,比如集成Elasticsearch。
项目快速启动
要开始使用 Pagy,首先确保你的环境中已经安装了 Ruby,并且通过以下命令添加 Pagy 到你的 Gemfile 中:
gem 'pagy'
之后,执行 bundle install
来安装。接下来,在你的应用程序中初始化 Pagy 并进行基本分页。以 Rails 应用为例,假设你想对产品列表进行分页:
# 在控制器中
def index
@pagy, @products = pagy(Product.all)
end
# 在视图中
<%== pagy_nav(@pagy) if @pagy.pages > 1 %>
<ul>
<%= @products.each do |product| %>
<li><%= product.name %></li>
<% end %>
</ul>
如果你想使用 Bootstrap 样式的导航,只需在初始化时加入对应的额外组件:
require 'pagy/extras/bootstrap'
并在视图中使用 pagy_bootstrap_nav(@pagy)
替换普通导航。
应用案例和最佳实践
Keyset Pagination
对于处理大量数据,采用 Keyset Pagination 是一种明智的选择,Pagy 自版本9.0起提供了这一特性,尤其适用于大数据集合的高效率滚动。这避免了传统的基于偏移量的分页带来的性能瓶颈。
# 假设我们有一个排序条件
@pagy, @products = pagy(Product.order(:created_at), vars: [:sort])
无计数分页(Countless)
当你处理的数据集合极大以至于计算总数变得昂贵时,可以利用 Pagy::Countless
特性。
典型生态项目
Pagy 的生态系统允许与各种环境和库无缝集成,例如 Elasticsearch:
require 'pagy/extras/elasticsearch_rails'
extend Pagy::ElasticsearchRails
def search
response = Article.search(params[:query], page: pagy_page, per_page: pagy_items)
@pagy, @articles = pagy_elasticsearch_rails(response)
end
此外,Pagy 还支持客户端分页、无限滚动等现代交互模式,通过提供 JavaScript 辅助方法和示例,使开发者能够轻松实现这些高级功能。
以上就是关于 Pagy 的简明快速入门及一些进阶实践概览。深入探索其详细文档,将帮助你充分利用这个高效分页解决方案来优化你的应用程序。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~045CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









