JNeRF 开源项目教程
2024-09-14 13:15:28作者:明树来
1. 项目介绍
JNeRF 是一个基于 Jittor 框架的 NeRF(Neural Radiance Fields)基准库。NeRF 是一种用于视图合成的技术,通过将场景表示为神经辐射场,能够生成高质量的新视角图像。JNeRF 支持 Instant-NGP,能够在 5 秒内训练出一个 NeRF 模型,并且性能和速度与原始论文相当。
JNeRF 的主要特点包括:
- 高效训练:支持 Instant-NGP,能够在 5 秒内完成 NeRF 模型的训练。
- 模块化设计:将 NeRF 的主要训练流程总结为 7 个模块,方便调用和替换。
- 跨平台支持:基于 Jittor 框架,支持多种硬件平台,包括移动端。
2. 项目快速启动
环境要求
- 操作系统:Linux(如 Ubuntu/CentOS/Arch)、macOS 或 Windows Subsystem for Linux (WSL)
- Python 版本 >= 3.7
- CPU 编译器(至少需要以下之一):
- g++ (>=5.4.0)
- clang (>=8.0)
- GPU 编译器(可选):
- nvcc (>=10.0 for g++ 或 >=10.2 for clang)
- GPU 库:cudnn-dev(推荐使用 tar 文件安装)
- GPU 支持:
- sm arch >= sm_61(如 GTX 10x0 / TITAN Xp 及以上)
- 使用 fp16:sm arch >= sm_70(如 TITAN V / V100 及以上)
- 使用 FullyFusedMLP:sm arch >= sm_75(如 RTX 20x0 及以上)
安装步骤
-
克隆 JNeRF 仓库:
git clone https://github.com/Jittor/JNeRF.git cd JNeRF
-
安装依赖并启动 JNeRF:
python3 -m pip install --user -e .
-
检查安装是否成功:
import jnerf
快速启动示例
以下是一个简单的训练示例,使用 LEGO 数据集进行训练:
python tools/run_net.py --config-file /projects/ngp/configs/ngp_base.py
3. 应用案例和最佳实践
应用案例
JNeRF 可以应用于多种场景,包括但不限于:
- 新视角合成:通过训练 NeRF 模型,生成高质量的新视角图像。
- 虚拟现实:在 VR 应用中,使用 NeRF 生成逼真的虚拟环境。
- 增强现实:在 AR 应用中,使用 NeRF 生成与现实环境融合的虚拟物体。
最佳实践
- 数据集准备:JNeRF 支持多种数据集,包括 fox 和 LEGO 数据集。用户也可以准备自己的数据集,只需按照 JNeRF 的数据格式进行组织。
- 配置文件:JNeRF 的配置文件位于
projects/
目录下。用户可以通过修改配置文件来调整模型的训练参数。 - 训练与测试:训练完成后,可以使用预训练模型进行测试和渲染。通过设置
--task
参数,可以指定不同的任务,如test
或render
。
4. 典型生态项目
JNeRF 作为 Jittor 框架的一部分,与其他 Jittor 生态项目紧密结合。以下是一些典型的生态项目:
- Jittor:Jittor 是一个即时编译的深度学习框架,支持高效的计算和灵活的模型定义。
- JittorCV:JittorCV 是基于 Jittor 的计算机视觉库,提供了丰富的图像处理和计算机视觉算法。
- JittorNLP:JittorNLP 是基于 Jittor 的自然语言处理库,支持多种 NLP 任务和模型。
通过这些生态项目,用户可以构建完整的深度学习应用,从数据处理到模型训练,再到应用部署。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
0