JNeRF 开源项目教程
2024-09-14 14:22:04作者:明树来
1. 项目介绍
JNeRF 是一个基于 Jittor 框架的 NeRF(Neural Radiance Fields)基准库。NeRF 是一种用于视图合成的技术,通过将场景表示为神经辐射场,能够生成高质量的新视角图像。JNeRF 支持 Instant-NGP,能够在 5 秒内训练出一个 NeRF 模型,并且性能和速度与原始论文相当。
JNeRF 的主要特点包括:
- 高效训练:支持 Instant-NGP,能够在 5 秒内完成 NeRF 模型的训练。
- 模块化设计:将 NeRF 的主要训练流程总结为 7 个模块,方便调用和替换。
- 跨平台支持:基于 Jittor 框架,支持多种硬件平台,包括移动端。
2. 项目快速启动
环境要求
- 操作系统:Linux(如 Ubuntu/CentOS/Arch)、macOS 或 Windows Subsystem for Linux (WSL)
- Python 版本 >= 3.7
- CPU 编译器(至少需要以下之一):
- g++ (>=5.4.0)
- clang (>=8.0)
- GPU 编译器(可选):
- nvcc (>=10.0 for g++ 或 >=10.2 for clang)
- GPU 库:cudnn-dev(推荐使用 tar 文件安装)
- GPU 支持:
- sm arch >= sm_61(如 GTX 10x0 / TITAN Xp 及以上)
- 使用 fp16:sm arch >= sm_70(如 TITAN V / V100 及以上)
- 使用 FullyFusedMLP:sm arch >= sm_75(如 RTX 20x0 及以上)
安装步骤
-
克隆 JNeRF 仓库:
git clone https://github.com/Jittor/JNeRF.git cd JNeRF
-
安装依赖并启动 JNeRF:
python3 -m pip install --user -e .
-
检查安装是否成功:
import jnerf
快速启动示例
以下是一个简单的训练示例,使用 LEGO 数据集进行训练:
python tools/run_net.py --config-file /projects/ngp/configs/ngp_base.py
3. 应用案例和最佳实践
应用案例
JNeRF 可以应用于多种场景,包括但不限于:
- 新视角合成:通过训练 NeRF 模型,生成高质量的新视角图像。
- 虚拟现实:在 VR 应用中,使用 NeRF 生成逼真的虚拟环境。
- 增强现实:在 AR 应用中,使用 NeRF 生成与现实环境融合的虚拟物体。
最佳实践
- 数据集准备:JNeRF 支持多种数据集,包括 fox 和 LEGO 数据集。用户也可以准备自己的数据集,只需按照 JNeRF 的数据格式进行组织。
- 配置文件:JNeRF 的配置文件位于
projects/
目录下。用户可以通过修改配置文件来调整模型的训练参数。 - 训练与测试:训练完成后,可以使用预训练模型进行测试和渲染。通过设置
--task
参数,可以指定不同的任务,如test
或render
。
4. 典型生态项目
JNeRF 作为 Jittor 框架的一部分,与其他 Jittor 生态项目紧密结合。以下是一些典型的生态项目:
- Jittor:Jittor 是一个即时编译的深度学习框架,支持高效的计算和灵活的模型定义。
- JittorCV:JittorCV 是基于 Jittor 的计算机视觉库,提供了丰富的图像处理和计算机视觉算法。
- JittorNLP:JittorNLP 是基于 Jittor 的自然语言处理库,支持多种 NLP 任务和模型。
通过这些生态项目,用户可以构建完整的深度学习应用,从数据处理到模型训练,再到应用部署。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0104Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
895
531

Konado是一个对话创建工具,提供多种对话模板以及对话管理器,可以快速创建对话游戏,也可以嵌入各类游戏的对话场景
GDScript
21
13

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
85
4

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
372
387

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
625
60

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
401
377