JNeRF 开源项目教程
2024-09-14 15:06:06作者:明树来
1. 项目介绍
JNeRF 是一个基于 Jittor 框架的 NeRF(Neural Radiance Fields)基准库。NeRF 是一种用于视图合成的技术,通过将场景表示为神经辐射场,能够生成高质量的新视角图像。JNeRF 支持 Instant-NGP,能够在 5 秒内训练出一个 NeRF 模型,并且性能和速度与原始论文相当。
JNeRF 的主要特点包括:
- 高效训练:支持 Instant-NGP,能够在 5 秒内完成 NeRF 模型的训练。
- 模块化设计:将 NeRF 的主要训练流程总结为 7 个模块,方便调用和替换。
- 跨平台支持:基于 Jittor 框架,支持多种硬件平台,包括移动端。
2. 项目快速启动
环境要求
- 操作系统:Linux(如 Ubuntu/CentOS/Arch)、macOS 或 Windows Subsystem for Linux (WSL)
- Python 版本 >= 3.7
- CPU 编译器(至少需要以下之一):
- g++ (>=5.4.0)
- clang (>=8.0)
- GPU 编译器(可选):
- nvcc (>=10.0 for g++ 或 >=10.2 for clang)
- GPU 库:cudnn-dev(推荐使用 tar 文件安装)
- GPU 支持:
- sm arch >= sm_61(如 GTX 10x0 / TITAN Xp 及以上)
- 使用 fp16:sm arch >= sm_70(如 TITAN V / V100 及以上)
- 使用 FullyFusedMLP:sm arch >= sm_75(如 RTX 20x0 及以上)
安装步骤
-
克隆 JNeRF 仓库:
git clone https://github.com/Jittor/JNeRF.git cd JNeRF -
安装依赖并启动 JNeRF:
python3 -m pip install --user -e . -
检查安装是否成功:
import jnerf
快速启动示例
以下是一个简单的训练示例,使用 LEGO 数据集进行训练:
python tools/run_net.py --config-file /projects/ngp/configs/ngp_base.py
3. 应用案例和最佳实践
应用案例
JNeRF 可以应用于多种场景,包括但不限于:
- 新视角合成:通过训练 NeRF 模型,生成高质量的新视角图像。
- 虚拟现实:在 VR 应用中,使用 NeRF 生成逼真的虚拟环境。
- 增强现实:在 AR 应用中,使用 NeRF 生成与现实环境融合的虚拟物体。
最佳实践
- 数据集准备:JNeRF 支持多种数据集,包括 fox 和 LEGO 数据集。用户也可以准备自己的数据集,只需按照 JNeRF 的数据格式进行组织。
- 配置文件:JNeRF 的配置文件位于
projects/目录下。用户可以通过修改配置文件来调整模型的训练参数。 - 训练与测试:训练完成后,可以使用预训练模型进行测试和渲染。通过设置
--task参数,可以指定不同的任务,如test或render。
4. 典型生态项目
JNeRF 作为 Jittor 框架的一部分,与其他 Jittor 生态项目紧密结合。以下是一些典型的生态项目:
- Jittor:Jittor 是一个即时编译的深度学习框架,支持高效的计算和灵活的模型定义。
- JittorCV:JittorCV 是基于 Jittor 的计算机视觉库,提供了丰富的图像处理和计算机视觉算法。
- JittorNLP:JittorNLP 是基于 Jittor 的自然语言处理库,支持多种 NLP 任务和模型。
通过这些生态项目,用户可以构建完整的深度学习应用,从数据处理到模型训练,再到应用部署。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217