Liger-Kernel项目中logits优化策略解析
2025-06-10 23:51:30作者:傅爽业Veleda
在深度学习模型训练过程中,内存优化是一个永恒的话题。Liger-Kernel项目采用了一种创新的logits处理策略,通过延迟计算和分块处理技术显著降低了训练过程中的峰值内存消耗。
logits的传统处理方式
在常规的Transformer模型实现中,logits(模型输出的未归一化预测值)通常会在前向传播过程中完整计算并保存。这种做法虽然直观,但会带来两个主要问题:
- 内存消耗大:logits的尺寸通常为(batch_size, sequence_length, vocab_size),对于大词汇表任务,这会占用大量显存
- 计算冗余:在交叉熵损失计算中,实际上并不需要保留完整的logits矩阵
Liger-Kernel的创新方案
Liger-Kernel项目通过深度优化实现了更高效的logits处理:
- 训练时延迟计算:在前向传播过程中不立即计算完整的logits矩阵,而是将其设为None
- 分块计算策略:在计算交叉熵损失时,仅按需分块计算logits的中间值
- 融合操作:将线性层计算与交叉熵损失计算融合为一个高效的操作
技术实现细节
这种优化主要依赖于两个关键技术点:
- fused_linear_cross_entropy:一个融合了线性变换和交叉熵计算的定制化操作,避免了完整logits矩阵的存储
- 按需分块计算:在损失计算过程中,将大矩阵分解为小块进行处理,显著降低了峰值内存需求
性能优势
这种优化策略带来了显著的性能提升:
- 内存效率提升:峰值内存使用量可降低30%-50%(取决于词汇表大小)
- 计算效率优化:避免了不必要的矩阵存储和传输
- 训练稳定性增强:减少了内存不足导致的中断风险
适用场景
这种优化特别适合以下场景:
- 大规模语言模型训练
- 词汇量特别大的任务(如多语言模型)
- 有限显存条件下的模型训练
总结
Liger-Kernel项目的logits优化策略展示了深度学习系统级优化的精妙之处。通过重新设计计算流程和内存访问模式,在不影响模型精度的情况下,显著提升了训练效率和资源利用率。这种思路对于深度学习框架的优化设计具有重要的参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
Ascend Extension for PyTorch
Python
221
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.86 K
React Native鸿蒙化仓库
JavaScript
260
322