Longhorn项目:Engine v2卷监控指标的缺失与实现方案
背景介绍
在分布式存储系统Longhorn中,监控指标对于运维和性能分析至关重要。Engine v1版本通过控制器收集并暴露了多项关键指标,包括卷写入吞吐量、IOPS和延迟等。然而,在Engine v2版本中,这些重要的监控指标却出现了缺失,导致运维人员无法全面掌握存储系统的运行状态。
问题分析
Engine v1版本通过控制器的特定代码路径收集卷性能指标,并将这些数据暴露给Prometheus监控系统。但在迁移到基于SPDK的Engine v2架构后,原有的指标收集机制不再适用,导致以下关键指标无法获取:
- 卷写入吞吐量(longhorn_volume_write_throughput)
- 卷写入IOPS(longhorn_volume_write_iops)
- 卷写入延迟(longhorn_volume_write_latency)
日志分析显示,Longhorn管理器在尝试从Engine v2卷收集指标时,会反复出现连接错误,这表明底层通信机制存在问题。
技术解决方案
SPDK框架本身提供了获取块设备性能统计数据的接口bdev_get_iostat。该接口返回的JSON格式数据包含了我们需要的所有关键指标:
- bytes_written:写入字节数
- num_write_ops:写入操作次数
- write_latency_ticks:写入延迟(以时钟周期计)
实现方案的核心是在longhorn-spdk-engine服务中集成SPDK客户端,通过调用bdev_get_iostat接口获取原始性能数据,然后通过gRPC接口将这些数据提供给上层管理系统。这种设计保持了与Engine v1相似的架构,确保了监控系统的一致性。
实现细节
具体实现涉及多个组件的修改:
- SPDK辅助工具库:添加对bdev_get_iostat接口的封装
- 类型定义:更新指标相关的gRPC协议定义
- Engine实现:在longhorn-spdk-engine中集成指标收集功能
- 实例管理器:处理Engine v2特有的指标收集逻辑
- 管理器:统一处理来自不同Engine版本的指标数据
这种分层设计确保了系统的扩展性和维护性,同时也为未来可能的指标扩展预留了空间。
验证与测试
在实际部署中,验证了以下关键点:
- 创建v2卷并附加到节点后,所有预期指标均可正常获取
- 指标数据格式与Engine v1保持一致,确保监控系统的兼容性
- 系统日志中不再出现指标收集失败的错误信息
- 性能指标能够实时反映卷的实际负载情况
通过命令行工具可以直接查询到这些指标,证明实现方案的有效性。例如,写入吞吐量、IOPS和延迟指标都能正确显示。
总结
Engine v2卷监控指标的实现填补了Longhorn在SPDK架构下的监控空白,为运维人员提供了完整的性能可视化能力。这一改进不仅解决了现有问题,还为后续的性能优化工作奠定了基础。通过复用SPDK原生接口,该方案既保证了实现的可靠性,又最大限度地减少了性能开销。
对于正在评估或已经部署Longhorn Engine v2的用户来说,这一改进意味着他们现在可以获得与Engine v1同等级别的监控能力,从而更好地管理和优化其存储基础设施。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00