Narwhals v1.27.0版本发布:性能优化与功能增强
Narwhals是一个专注于数据处理的Python库,它提供了高效、灵活的数据操作接口,能够与多种数据处理后端(如Pandas、Spark等)无缝集成。该项目旨在为数据科学家和工程师提供统一的API,简化跨平台数据处理工作流程。
性能优化亮点
本次v1.27.0版本在性能方面做出了多项重要改进:
-
避免重复表达式计算:在
mean_horizontal函数中优化了实现逻辑,消除了不必要的重复表达式计算,显著提升了计算效率。 -
异常处理优化:重构了
_hasattr_static方法的实现,减少了try/except块的使用,使得属性检查更加高效。 -
分组操作加速:针对Pandas风格的单表达式分组操作实现了快速路径处理,同时优化了索引重置逻辑,避免在不需要时执行不必要的索引操作。
新增功能特性
-
Spark风格结构体支持:新增了对Spark风格结构体的转换支持,用户现在可以方便地在Narwhals和Spark结构体之间进行类型转换。
-
Series索引增强:实现了
series[other_series]形式的索引操作,提供了更灵活的数据访问方式。
问题修复与改进
-
统计计算修正:调整了DuckDB中人口偏度的计算方式,通过引入修正因子确保获得样本偏度的正确结果。
-
SQLFrame兼容性:修复了SQLFrame在合规性检查中的误报问题。
-
类型系统增强:多项类型系统改进,包括将
TypeGuard升级为TypeIs,优化了时间单位和时区的类型处理。
代码质量提升
-
类型注解强化:通过使用
Mapping和Sequence等抽象基类,使from_numpy和from_dict等方法的类型提示更加灵活和准确。 -
测试覆盖扩展:增加了对
sum_horizontal等函数的测试用例,确保转换操作的正确性。 -
代码重构:对表达式元数据、过滤逻辑和命名表达式等核心组件进行了重构,提高了代码的可维护性。
总结
Narwhals v1.27.0版本在保持API稳定性的同时,通过性能优化、功能增强和问题修复,进一步提升了数据处理效率和用户体验。特别是对Spark结构体的支持和对Series索引的增强,使得跨平台数据处理更加便捷。这些改进使得Narwhals在数据科学工作流中的价值更加突出,为处理大规模数据集提供了更高效的工具。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00