Narwhals v1.27.0版本发布:性能优化与功能增强
Narwhals是一个专注于数据处理的Python库,它提供了高效、灵活的数据操作接口,能够与多种数据处理后端(如Pandas、Spark等)无缝集成。该项目旨在为数据科学家和工程师提供统一的API,简化跨平台数据处理工作流程。
性能优化亮点
本次v1.27.0版本在性能方面做出了多项重要改进:
-
避免重复表达式计算:在
mean_horizontal函数中优化了实现逻辑,消除了不必要的重复表达式计算,显著提升了计算效率。 -
异常处理优化:重构了
_hasattr_static方法的实现,减少了try/except块的使用,使得属性检查更加高效。 -
分组操作加速:针对Pandas风格的单表达式分组操作实现了快速路径处理,同时优化了索引重置逻辑,避免在不需要时执行不必要的索引操作。
新增功能特性
-
Spark风格结构体支持:新增了对Spark风格结构体的转换支持,用户现在可以方便地在Narwhals和Spark结构体之间进行类型转换。
-
Series索引增强:实现了
series[other_series]形式的索引操作,提供了更灵活的数据访问方式。
问题修复与改进
-
统计计算修正:调整了DuckDB中人口偏度的计算方式,通过引入修正因子确保获得样本偏度的正确结果。
-
SQLFrame兼容性:修复了SQLFrame在合规性检查中的误报问题。
-
类型系统增强:多项类型系统改进,包括将
TypeGuard升级为TypeIs,优化了时间单位和时区的类型处理。
代码质量提升
-
类型注解强化:通过使用
Mapping和Sequence等抽象基类,使from_numpy和from_dict等方法的类型提示更加灵活和准确。 -
测试覆盖扩展:增加了对
sum_horizontal等函数的测试用例,确保转换操作的正确性。 -
代码重构:对表达式元数据、过滤逻辑和命名表达式等核心组件进行了重构,提高了代码的可维护性。
总结
Narwhals v1.27.0版本在保持API稳定性的同时,通过性能优化、功能增强和问题修复,进一步提升了数据处理效率和用户体验。特别是对Spark结构体的支持和对Series索引的增强,使得跨平台数据处理更加便捷。这些改进使得Narwhals在数据科学工作流中的价值更加突出,为处理大规模数据集提供了更高效的工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00