Tiptap项目中HTML样式属性解析问题的技术分析
Tiptap作为一款流行的富文本编辑器框架,在其2.4.0及以上版本中出现了一个值得开发者注意的技术问题——当使用@tiptap/html包在Node.js环境下解析HTML时,样式属性(style)的处理出现了异常。这个问题源于底层依赖库的变更,对需要在服务端处理富文本内容的开发者影响较大。
问题本质
问题的核心在于prosemirror-model从1.21.1版本开始改变了处理style属性的方式。新版本不再直接解析style属性字符串,而是期望通过DOM节点的style属性访问CSSStyleDeclaration对象,依赖该对象提供的length、item和getPropertyValue等API。
然而,Tiptap在Node.js环境下使用的zeed-dom库并未实现这些CSSStyleDeclaration的标准API。zeed-dom中的style属性只是一个普通对象,导致Tiptap无法正确识别和处理HTML中的内联样式。例如,类似<span style="text-decoration: underline">这样的文本装饰样式无法被正确转换为对应的Tiptap标记(如标签)。
影响范围
这个问题特别影响以下使用场景:
- 在Node.js环境中使用@tiptap/html包解析HTML内容
- 依赖style属性进行富文本样式标记的场景
- 需要服务端和客户端解析结果一致的应用程序
一个典型的表现是:原本应该被转换为<p><u>example text</u></p>的HTML输入,在服务端解析后变成了<p>example text</p>,丢失了所有的样式信息。
临时解决方案
对于急需解决问题的开发者,目前有以下几种临时方案:
- 锁定prosemirror-model版本为1.21.0
"overrides": {
"prosemirror-model": "1.21.0"
}
-
替换zeed-dom为其他DOM实现库,如linkedom或happy-dom
-
对于高级用户,可以考虑直接操作Tiptap的JSON结构,绕过HTML解析环节
长期解决方案
Tiptap团队已经意识到这个问题的重要性,并计划在几个方面进行改进:
-
在即将发布的V3版本中,将默认使用happy-dom替代zeed-dom。happy-dom提供了更完整的DOM API实现,包括对CSSStyleDeclaration的完整支持。
-
开发新的静态渲染器,直接从Tiptap JSON生成HTML,避免依赖DOM模拟。这种方法不仅解决了当前问题,还能提高服务端渲染的性能。
-
与zeed-dom维护者合作,推动其实现缺失的CSS API。目前zeed-dom已经部分更新,但完整支持仍需时间。
开发者建议
对于正在使用或计划使用Tiptap进行服务端HTML处理的开发者,建议:
-
评估项目对样式属性的依赖程度,如果影响较大,考虑暂时锁定依赖版本
-
关注Tiptap V3的发布进度,新版将从根本上解决这个问题
-
在关键业务逻辑中增加对样式解析结果的测试,确保服务端和客户端行为一致
-
对于需要高度自定义样式处理的场景,可以考虑实现自己的解析层,或者等待静态渲染器功能发布
这个问题虽然技术细节较为复杂,但反映了现代富文本编辑器在跨环境兼容性方面的挑战。随着Tiptap生态的持续完善,相信这类问题将得到更好的解决。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00