word2vec_commented:深入理解Google的词向量模型
2024-09-19 10:09:09作者:段琳惟
项目介绍
word2vec_commented 是一个基于Google发布的C语言实现的word2vec项目,但增加了详细的源代码注释。该项目保留了Google原版word2vec的所有功能,旨在帮助开发者更深入地理解word2vec的内部工作机制。如果你对word2vec还不熟悉,建议先阅读我的教程。
项目技术分析
训练模型
word2vec的训练主要在word2vec.c文件中进行。该文件包含了skip-gram和CBOW(Continuous Bag of Words)两种架构的训练代码,并且都使用了负采样(negative sampling)技术。目前,项目还未对Hierarchical Softmax进行注释。
文本解析
word2vec项目本身不包含文本解析和分词的代码,它只接受以空格(包括空格、制表符或换行符)分隔的单词作为输入。这意味着你需要在输入前自行处理标点符号等问题。输入文本应按句子分隔,每行一个句子,句子长度默认为1000个单词。
词汇构建
word2vec.c文件中包含了构建词汇表的代码。词汇表通过哈希表实现快速查找,哈希表将单词字符串映射到对应的vocab_word对象。词汇表的构建从LearnVocabFromTrainFile函数开始,该函数会统计训练文本中每个单词的频率。如果词汇表的大小超过哈希表大小的70%,代码会通过删除低频词来优化哈希表的性能。
项目及技术应用场景
word2vec_commented项目适用于以下场景:
- 自然语言处理研究:研究人员可以通过阅读详细的代码注释,深入理解word2vec的实现细节,从而更好地进行模型优化和创新。
- 教育与培训:对于学习自然语言处理的学生和开发者,该项目提供了一个极佳的学习资源,帮助他们掌握词向量模型的核心概念。
- 工业应用:开发者可以在理解word2vec的基础上,将其应用于文本分类、情感分析、机器翻译等实际项目中。
项目特点
- 功能完整:项目保留了Google原版word2vec的所有功能,确保了代码的完整性和可靠性。
- 详细注释:每行代码都附有详细的注释,帮助开发者快速理解代码逻辑和实现细节。
- 灵活性:支持skip-gram和CBOW两种架构,并且都使用了负采样技术,开发者可以根据需求选择合适的模型。
- 可读性强:建议使用支持代码块折叠的编辑器查看代码,这样可以更清晰地阅读感兴趣的部分。
通过word2vec_commented项目,你不仅可以掌握word2vec的核心技术,还能在实际应用中灵活运用,提升自然语言处理任务的效果。快来体验这个开源项目,开启你的词向量模型探索之旅吧!
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210