Statsample 项目技术文档
2024-12-20 07:48:05作者:翟萌耘Ralph
1. 安装指南
1.1 安装 Ruby
首先,确保你已经安装了 Ruby 环境。你可以通过以下命令检查是否已安装 Ruby:
ruby -v
如果未安装,请根据你的操作系统选择合适的安装方法。例如,在 Ubuntu 上可以使用以下命令安装:
sudo apt-get install ruby-full
1.2 安装 Statsample
使用以下命令安装 Statsample 及其依赖:
sudo gem install statsample
1.3 可选依赖安装
如果你需要进行高级统计分析或绘图,可以安装以下可选依赖:
- GSL 库:用于因子分析和多项相关分析。
sudo gem install rb-gsl
- Statsample-optimization:用于加速某些方法。
sudo gem install statsample-optimization
- Statsample-sem:用于结构方程建模。
sudo gem install statsample-sem
2. 项目的使用说明
2.1 基本统计分析
Statsample 提供了丰富的统计分析功能,包括描述性统计、相关性分析、ANOVA、回归分析等。以下是一个简单的示例,展示如何计算一组数据的均值和标准差:
require 'statsample'
data = [10, 20, 30, 40, 50]
vector = Statsample::Vector.new(data)
puts "Mean: #{vector.mean}"
puts "Standard Deviation: #{vector.sd}"
2.2 数据导入与导出
Statsample 支持从 CSV、Excel 等文件格式导入数据,并可以将分析结果导出为这些格式。以下是一个导入 CSV 文件的示例:
require 'statsample'
dataset = Statsample::CSV.read('data.csv')
puts dataset.summary
2.3 绘图功能
Statsample 提供了基本的绘图功能,如直方图、箱线图和散点图。以下是一个绘制箱线图的示例:
require 'statsample'
data = [10, 20, 30, 40, 50, 100]
vector = Statsample::Vector.new(data)
boxplot = Statsample::Graph::Boxplot.new(vector)
boxplot.export_to_file('boxplot.svg')
3. 项目API使用文档
3.1 描述性统计
Statsample::Vector:用于存储和操作一维数据,提供均值、标准差、中位数等统计方法。Statsample::Dataset:用于存储和操作二维数据,类似于 R 中的数据框。
3.2 相关性分析
Statsample::Bivariate.correlation_matrix:计算相关性矩阵。Statsample::Bivariate::Tetrachoric:计算四分相关。Statsample::Bivariate::Polychoric:计算多项相关。
3.3 回归分析
Statsample::Regression::Simple:简单线性回归。Statsample::Regression::Multiple:多元线性回归。Statsample::Regression::Binomial::Logit:Logit 回归。Statsample::Regression::Binomial::Probit:Probit 回归。
3.4 因子分析
Statsample::Factor::PCA:主成分分析。Statsample::Factor::Varimax:Varimax 旋转。Statsample::Factor::ParallelAnalysis:并行分析。
3.5 可靠性分析
Statsample::Reliability::ScaleAnalysis:计算 Cronbach's Alpha 等可靠性指标。
4. 项目安装方式
4.1 使用 Gem 安装
Statsample 可以通过 RubyGems 安装:
sudo gem install statsample
4.2 源码安装
如果你需要从源码安装,可以克隆 GitHub 仓库并运行安装脚本:
git clone https://github.com/sciruby/statsample.git
cd statsample
sudo ruby setup.rb
4.3 可选依赖安装
根据你的需求,安装可选依赖以增强功能:
sudo gem install rb-gsl statsample-optimization statsample-sem
通过以上步骤,你可以顺利安装并使用 Statsample 进行各种统计分析。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
580
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
359
仓颉编程语言运行时与标准库。
Cangjie
130
372
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
184
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205