Statsample 项目技术文档
2024-12-20 09:45:07作者:翟萌耘Ralph
1. 安装指南
1.1 安装 Ruby
首先,确保你已经安装了 Ruby 环境。你可以通过以下命令检查是否已安装 Ruby:
ruby -v
如果未安装,请根据你的操作系统选择合适的安装方法。例如,在 Ubuntu 上可以使用以下命令安装:
sudo apt-get install ruby-full
1.2 安装 Statsample
使用以下命令安装 Statsample 及其依赖:
sudo gem install statsample
1.3 可选依赖安装
如果你需要进行高级统计分析或绘图,可以安装以下可选依赖:
- GSL 库:用于因子分析和多项相关分析。
sudo gem install rb-gsl
- Statsample-optimization:用于加速某些方法。
sudo gem install statsample-optimization
- Statsample-sem:用于结构方程建模。
sudo gem install statsample-sem
2. 项目的使用说明
2.1 基本统计分析
Statsample 提供了丰富的统计分析功能,包括描述性统计、相关性分析、ANOVA、回归分析等。以下是一个简单的示例,展示如何计算一组数据的均值和标准差:
require 'statsample'
data = [10, 20, 30, 40, 50]
vector = Statsample::Vector.new(data)
puts "Mean: #{vector.mean}"
puts "Standard Deviation: #{vector.sd}"
2.2 数据导入与导出
Statsample 支持从 CSV、Excel 等文件格式导入数据,并可以将分析结果导出为这些格式。以下是一个导入 CSV 文件的示例:
require 'statsample'
dataset = Statsample::CSV.read('data.csv')
puts dataset.summary
2.3 绘图功能
Statsample 提供了基本的绘图功能,如直方图、箱线图和散点图。以下是一个绘制箱线图的示例:
require 'statsample'
data = [10, 20, 30, 40, 50, 100]
vector = Statsample::Vector.new(data)
boxplot = Statsample::Graph::Boxplot.new(vector)
boxplot.export_to_file('boxplot.svg')
3. 项目API使用文档
3.1 描述性统计
Statsample::Vector
:用于存储和操作一维数据,提供均值、标准差、中位数等统计方法。Statsample::Dataset
:用于存储和操作二维数据,类似于 R 中的数据框。
3.2 相关性分析
Statsample::Bivariate.correlation_matrix
:计算相关性矩阵。Statsample::Bivariate::Tetrachoric
:计算四分相关。Statsample::Bivariate::Polychoric
:计算多项相关。
3.3 回归分析
Statsample::Regression::Simple
:简单线性回归。Statsample::Regression::Multiple
:多元线性回归。Statsample::Regression::Binomial::Logit
:Logit 回归。Statsample::Regression::Binomial::Probit
:Probit 回归。
3.4 因子分析
Statsample::Factor::PCA
:主成分分析。Statsample::Factor::Varimax
:Varimax 旋转。Statsample::Factor::ParallelAnalysis
:并行分析。
3.5 可靠性分析
Statsample::Reliability::ScaleAnalysis
:计算 Cronbach's Alpha 等可靠性指标。
4. 项目安装方式
4.1 使用 Gem 安装
Statsample 可以通过 RubyGems 安装:
sudo gem install statsample
4.2 源码安装
如果你需要从源码安装,可以克隆 GitHub 仓库并运行安装脚本:
git clone https://github.com/sciruby/statsample.git
cd statsample
sudo ruby setup.rb
4.3 可选依赖安装
根据你的需求,安装可选依赖以增强功能:
sudo gem install rb-gsl statsample-optimization statsample-sem
通过以上步骤,你可以顺利安装并使用 Statsample 进行各种统计分析。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~088CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
887
525

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
188

React Native鸿蒙化仓库
C++
182
265

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
368
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
737
105