ColossalAI中混合并行优化器的参数分片内存问题分析
2025-05-02 19:28:32作者:明树来
问题背景
在ColossalAI项目的混合并行训练场景中,当使用张量并行(Tensor Parallelism)技术时,模型参数会被分片到不同的GPU上,以减少内存消耗并实现并行计算。然而,开发者发现优化器仍然保留着未分片的完整模型参数,导致内存无法被有效释放,造成了额外的内存开销。
问题现象
通过以下典型代码示例可以观察到问题现象:
colossalai.launch_from_torch(config={})
plugin = HybridParallelPlugin(tp_size=4, pp_size=1)
optimizer = Adam(model.parameters())
model, optimizer, *_ = booster.booster(model, optimizer, ...)
检查发现:
- 模型参数已被正确分片(如形状从[50257, 768]变为[12565, 768])
- 但优化器中的参数仍保持未分片状态(仍为[50257, 768])
- 混合精度优化器的参数映射关系也出现了不匹配
问题根源
深入分析后发现,问题主要出在模型预处理阶段的词表嵌入层调整逻辑上:
- 当词表大小不能被TP维度整除时,会调用HuggingFace的
resize_token_embeddings
方法 - 该方法会创建一个全新的
nn.Embedding
层,而非原地修改 - 导致模型参数ID发生变化,与优化器中保留的原始参数失去关联
具体表现为:
- GPT2和BERT等模型的默认词表大小不能被常见TP维度(如8)整除
- 这些模型会触发重建嵌入层的逻辑
- 而OPT、Falcon等模型的词表大小则通常可以整除
解决方案
提出了一个原地调整词表嵌入层的改进方案:
def resize_token_embedding_inplace(num_new_tokens: int, embedding: nn.Embedding):
# 原地调整词表嵌入层
embedding.num_embeddings = new_num_tokens
embedding.weight.data = nn.functional.pad(
embedding.weight.data,
(0, 0, 0, new_num_tokens - embedding.weight.size(0)),
"constant",
0,
)
该方案的优势在于:
- 使用
nn.functional.pad
直接扩展张量,避免创建新层 - 保持参数ID不变,确保优化器能正确跟踪参数
- 内存效率更高,不会产生冗余参数副本
技术影响
这个问题对训练过程有多方面影响:
- 内存消耗:未释放的完整参数副本增加了约1/TP_size倍的内存占用
- 训练正确性:混合精度优化器可能跳过部分参数的更新
- 性能表现:额外的内存压力可能影响整体训练效率
最佳实践建议
对于使用ColossalAI进行混合并行训练的用户,建议:
- 检查模型词表大小与TP维度的整除性
- 对于需要调整词表的情况,优先使用原地调整方案
- 监控训练过程中的内存使用情况
- 验证参数更新是否覆盖了所有分片
总结
ColossalAI作为领先的大模型训练框架,其混合并行功能需要精细的内存管理。这个参数分片问题的发现和解决,体现了深度学习系统优化中参数生命周期管理的重要性。通过采用原地调整策略,既保证了训练的正确性,又提升了内存使用效率,为大规模模型训练提供了更可靠的解决方案。
登录后查看全文
热门项目推荐
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript039RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0413arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript041GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。03CS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~014openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0146
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp博客页面工作坊中的断言方法优化建议6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp课程视频测验中的Tab键导航问题解析
最新内容推荐
Visual-RFT项目中模型路径差异的技术解析 Microcks在OpenShift上部署Keycloak PostgreSQL的权限问题解析 Beyla项目中的HTTP2连接检测问题解析 RaspberryMatic项目中HmIP-BWTH温控器假期模式设置问题分析 Lets-Plot 库中条形图标签在坐标轴反转时的定位问题解析 BedrockConnect项目版本兼容性问题解析与解决方案 LiquidJS 10.21.0版本新增数组过滤功能解析 Mink项目中Selenium驱动切换iframe的兼容性问题分析 Lichess移动端盲棋模式字符串优化解析 sbctl验证功能JSON输出问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
568
412

React Native鸿蒙化仓库
C++
125
208

openGauss kernel ~ openGauss is an open source relational database management system
C++
75
145

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
431
38

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
253

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
693
91

FOLib 是一个为Ai研发而生的、全语言制品库和供应链服务平台
Java
42
2

🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~
100
13

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
298
1.03 K