ColossalAI中混合并行优化器的参数分片内存问题分析
2025-05-02 21:25:22作者:明树来
问题背景
在ColossalAI项目的混合并行训练场景中,当使用张量并行(Tensor Parallelism)技术时,模型参数会被分片到不同的GPU上,以减少内存消耗并实现并行计算。然而,开发者发现优化器仍然保留着未分片的完整模型参数,导致内存无法被有效释放,造成了额外的内存开销。
问题现象
通过以下典型代码示例可以观察到问题现象:
colossalai.launch_from_torch(config={})
plugin = HybridParallelPlugin(tp_size=4, pp_size=1)
optimizer = Adam(model.parameters())
model, optimizer, *_ = booster.booster(model, optimizer, ...)
检查发现:
- 模型参数已被正确分片(如形状从[50257, 768]变为[12565, 768])
- 但优化器中的参数仍保持未分片状态(仍为[50257, 768])
- 混合精度优化器的参数映射关系也出现了不匹配
问题根源
深入分析后发现,问题主要出在模型预处理阶段的词表嵌入层调整逻辑上:
- 当词表大小不能被TP维度整除时,会调用HuggingFace的
resize_token_embeddings方法 - 该方法会创建一个全新的
nn.Embedding层,而非原地修改 - 导致模型参数ID发生变化,与优化器中保留的原始参数失去关联
具体表现为:
- GPT2和BERT等模型的默认词表大小不能被常见TP维度(如8)整除
- 这些模型会触发重建嵌入层的逻辑
- 而OPT、Falcon等模型的词表大小则通常可以整除
解决方案
提出了一个原地调整词表嵌入层的改进方案:
def resize_token_embedding_inplace(num_new_tokens: int, embedding: nn.Embedding):
# 原地调整词表嵌入层
embedding.num_embeddings = new_num_tokens
embedding.weight.data = nn.functional.pad(
embedding.weight.data,
(0, 0, 0, new_num_tokens - embedding.weight.size(0)),
"constant",
0,
)
该方案的优势在于:
- 使用
nn.functional.pad直接扩展张量,避免创建新层 - 保持参数ID不变,确保优化器能正确跟踪参数
- 内存效率更高,不会产生冗余参数副本
技术影响
这个问题对训练过程有多方面影响:
- 内存消耗:未释放的完整参数副本增加了约1/TP_size倍的内存占用
- 训练正确性:混合精度优化器可能跳过部分参数的更新
- 性能表现:额外的内存压力可能影响整体训练效率
最佳实践建议
对于使用ColossalAI进行混合并行训练的用户,建议:
- 检查模型词表大小与TP维度的整除性
- 对于需要调整词表的情况,优先使用原地调整方案
- 监控训练过程中的内存使用情况
- 验证参数更新是否覆盖了所有分片
总结
ColossalAI作为领先的大模型训练框架,其混合并行功能需要精细的内存管理。这个参数分片问题的发现和解决,体现了深度学习系统优化中参数生命周期管理的重要性。通过采用原地调整策略,既保证了训练的正确性,又提升了内存使用效率,为大规模模型训练提供了更可靠的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355