AxLearn项目TPU资源调度机制解析与优化建议
背景概述
在机器学习训练场景中,Google Kubernetes Engine(GKE)上的TPU资源调度是一个关键环节。AxLearn作为苹果开源的深度学习框架,其资源调度策略直接影响着训练任务的执行效率和成本控制。当前版本中,AxLearn对TPU资源的调度逻辑存在一些值得探讨的设计选择。
现有调度机制分析
AxLearn当前实现了两种主要的TPU资源调度策略:
-
预留实例调度: 当检测到环境变量中tier="0"且配置了reservation参数时,系统会通过nodeSelector指定使用特定的预留实例。这种模式适用于对资源保障要求高的生产环境。
-
Spot实例调度: 默认情况下(特别是tier≠0时),系统会自动添加"cloud.google.com/gke-spot"="true"的节点选择器,并配置相应的容忍度(toleration)。这种模式可以显著降低成本,但可能面临资源被回收的风险。
问题识别
当前实现存在一个明显的设计缺口:缺乏对按需(On-Demand)TPU实例的直接支持。在代码逻辑中,系统非此即彼地选择预留实例或Spot实例,没有保留使用标准按需实例的途径。这种设计可能导致以下场景:
- 用户希望使用稳定的按需实例,但不想使用预留实例
- 临时性任务不需要预留实例的长期承诺
- 测试环境中需要稳定的实例但不想配置预留
技术实现细节
核心调度逻辑位于节点选择器(selector)的配置部分。系统通过以下代码强制设置了资源类型:
if tier == "0" and cfg.reservation is not None:
selector.update({"cloud.google.com/reservation-name": cfg.reservation})
else:
selector.update({"cloud.google.com/gke-spot": "true"})
这种二元选择机制没有为按需实例保留配置空间。
优化建议
建议的架构改进方向:
-
三级调度策略:
- 第一优先级:预留实例(保障性需求)
- 第二优先级:按需实例(稳定性需求)
- 第三优先级:Spot实例(成本敏感型需求)
-
配置参数扩展: 可以引入新的配置参数如
use_ondemand,允许用户显式指定使用按需实例。 -
智能回退机制: 当首选资源类型不可用时,系统可以按照配置的优先级自动回退到次优选项。
影响评估
这种改进将带来以下好处:
- 增强调度灵活性,满足不同场景需求
- 保持与现有配置的兼容性
- 提供更细粒度的成本控制选项
- 改善开发测试环境的稳定性
实施考量
在实际修改时需要注意:
- 确保向后兼容,不影响现有部署
- 考虑配额系统的限制
- 完善文档说明各种调度模式的适用场景
- 可能需要更新相关的监控和日志记录
总结
AxLearn的TPU调度机制优化是一个平衡成本、稳定性和灵活性的过程。当前的Spot/预留实例二元选择虽然简单直接,但缺乏应对复杂场景的能力。通过引入按需实例支持,可以使框架适应更广泛的业务需求,同时保持架构的简洁性。这种改进对于提升AxLearn在企业级机器学习工作负载中的适用性具有重要意义。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00