AxLearn项目TPU资源调度机制解析与优化建议
背景概述
在机器学习训练场景中,Google Kubernetes Engine(GKE)上的TPU资源调度是一个关键环节。AxLearn作为苹果开源的深度学习框架,其资源调度策略直接影响着训练任务的执行效率和成本控制。当前版本中,AxLearn对TPU资源的调度逻辑存在一些值得探讨的设计选择。
现有调度机制分析
AxLearn当前实现了两种主要的TPU资源调度策略:
-
预留实例调度: 当检测到环境变量中tier="0"且配置了reservation参数时,系统会通过nodeSelector指定使用特定的预留实例。这种模式适用于对资源保障要求高的生产环境。
-
Spot实例调度: 默认情况下(特别是tier≠0时),系统会自动添加"cloud.google.com/gke-spot"="true"的节点选择器,并配置相应的容忍度(toleration)。这种模式可以显著降低成本,但可能面临资源被回收的风险。
问题识别
当前实现存在一个明显的设计缺口:缺乏对按需(On-Demand)TPU实例的直接支持。在代码逻辑中,系统非此即彼地选择预留实例或Spot实例,没有保留使用标准按需实例的途径。这种设计可能导致以下场景:
- 用户希望使用稳定的按需实例,但不想使用预留实例
- 临时性任务不需要预留实例的长期承诺
- 测试环境中需要稳定的实例但不想配置预留
技术实现细节
核心调度逻辑位于节点选择器(selector)的配置部分。系统通过以下代码强制设置了资源类型:
if tier == "0" and cfg.reservation is not None:
selector.update({"cloud.google.com/reservation-name": cfg.reservation})
else:
selector.update({"cloud.google.com/gke-spot": "true"})
这种二元选择机制没有为按需实例保留配置空间。
优化建议
建议的架构改进方向:
-
三级调度策略:
- 第一优先级:预留实例(保障性需求)
- 第二优先级:按需实例(稳定性需求)
- 第三优先级:Spot实例(成本敏感型需求)
-
配置参数扩展: 可以引入新的配置参数如
use_ondemand,允许用户显式指定使用按需实例。 -
智能回退机制: 当首选资源类型不可用时,系统可以按照配置的优先级自动回退到次优选项。
影响评估
这种改进将带来以下好处:
- 增强调度灵活性,满足不同场景需求
- 保持与现有配置的兼容性
- 提供更细粒度的成本控制选项
- 改善开发测试环境的稳定性
实施考量
在实际修改时需要注意:
- 确保向后兼容,不影响现有部署
- 考虑配额系统的限制
- 完善文档说明各种调度模式的适用场景
- 可能需要更新相关的监控和日志记录
总结
AxLearn的TPU调度机制优化是一个平衡成本、稳定性和灵活性的过程。当前的Spot/预留实例二元选择虽然简单直接,但缺乏应对复杂场景的能力。通过引入按需实例支持,可以使框架适应更广泛的业务需求,同时保持架构的简洁性。这种改进对于提升AxLearn在企业级机器学习工作负载中的适用性具有重要意义。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00