AxLearn项目TPU资源调度机制解析与优化建议
背景概述
在机器学习训练场景中,Google Kubernetes Engine(GKE)上的TPU资源调度是一个关键环节。AxLearn作为苹果开源的深度学习框架,其资源调度策略直接影响着训练任务的执行效率和成本控制。当前版本中,AxLearn对TPU资源的调度逻辑存在一些值得探讨的设计选择。
现有调度机制分析
AxLearn当前实现了两种主要的TPU资源调度策略:
-
预留实例调度: 当检测到环境变量中tier="0"且配置了reservation参数时,系统会通过nodeSelector指定使用特定的预留实例。这种模式适用于对资源保障要求高的生产环境。
-
Spot实例调度: 默认情况下(特别是tier≠0时),系统会自动添加"cloud.google.com/gke-spot"="true"的节点选择器,并配置相应的容忍度(toleration)。这种模式可以显著降低成本,但可能面临资源被回收的风险。
问题识别
当前实现存在一个明显的设计缺口:缺乏对按需(On-Demand)TPU实例的直接支持。在代码逻辑中,系统非此即彼地选择预留实例或Spot实例,没有保留使用标准按需实例的途径。这种设计可能导致以下场景:
- 用户希望使用稳定的按需实例,但不想使用预留实例
- 临时性任务不需要预留实例的长期承诺
- 测试环境中需要稳定的实例但不想配置预留
技术实现细节
核心调度逻辑位于节点选择器(selector)的配置部分。系统通过以下代码强制设置了资源类型:
if tier == "0" and cfg.reservation is not None:
selector.update({"cloud.google.com/reservation-name": cfg.reservation})
else:
selector.update({"cloud.google.com/gke-spot": "true"})
这种二元选择机制没有为按需实例保留配置空间。
优化建议
建议的架构改进方向:
-
三级调度策略:
- 第一优先级:预留实例(保障性需求)
- 第二优先级:按需实例(稳定性需求)
- 第三优先级:Spot实例(成本敏感型需求)
-
配置参数扩展: 可以引入新的配置参数如
use_ondemand,允许用户显式指定使用按需实例。 -
智能回退机制: 当首选资源类型不可用时,系统可以按照配置的优先级自动回退到次优选项。
影响评估
这种改进将带来以下好处:
- 增强调度灵活性,满足不同场景需求
- 保持与现有配置的兼容性
- 提供更细粒度的成本控制选项
- 改善开发测试环境的稳定性
实施考量
在实际修改时需要注意:
- 确保向后兼容,不影响现有部署
- 考虑配额系统的限制
- 完善文档说明各种调度模式的适用场景
- 可能需要更新相关的监控和日志记录
总结
AxLearn的TPU调度机制优化是一个平衡成本、稳定性和灵活性的过程。当前的Spot/预留实例二元选择虽然简单直接,但缺乏应对复杂场景的能力。通过引入按需实例支持,可以使框架适应更广泛的业务需求,同时保持架构的简洁性。这种改进对于提升AxLearn在企业级机器学习工作负载中的适用性具有重要意义。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00