SecretFlow项目:从数据库读取数据构建隐私计算数据框架的实践
2025-07-01 01:29:08作者:盛欣凯Ernestine
背景与需求分析
在隐私计算领域,SecretFlow作为一个重要的分布式隐私计算框架,其数据处理能力直接影响着整个系统的实用性。传统上,SecretFlow主要通过读取CSV文件来获取数据,但在实际生产环境中,企业数据往往存储在各类数据库中,特别是关系型数据库如MySQL。
技术实现方案
数据库连接与数据读取
通过Python的pymysql库可以方便地连接MySQL数据库并读取数据。核心实现包括:
- 建立数据库连接
- 执行SQL查询
- 将结果转换为Pandas DataFrame格式
def connect_to_mysql_and_read_data(database_name, table_name):
connection = pymysql.connect(
host="localhost",
user="username",
password="password",
database=database_name,
)
with connection.cursor() as cursor:
cursor.execute(f"SELECT * FROM {table_name};")
rows = cursor.fetchall()
columns = [desc[0] for desc in cursor.description]
return pd.DataFrame(rows, columns=columns)
构建VDataFrame
SecretFlow中的VDataFrame是纵向分区数据框架,用于表示按特征列分布在不同参与方的数据。从数据库读取数据后,可以通过以下方式构建:
import secretflow as sf
alice = sf.PYU("alice")
v_data = alice(connect_to_mysql_and_read_data)("db_name", "table_name")
数据求交与转换
在隐私计算场景中,经常需要进行多方数据求交(PSI)操作。SecretFlow提供了spu_device.psi_df方法进行求交:
spu_device = sf.SPU(spu_config)
psi_result = spu_device.psi_df(key="uid", dfs=[v_data1, v_data2])
求交结果可以直接用于构建新的VDataFrame,只需将结果分配给各参与方即可。
横向数据合并方案
对于横向分区数据(HDataFrame),即按样本行分布在不同参与方的数据,实现思路类似:
- 各参与方从自己的数据库读取部分数据
- 确保数据结构一致
- 使用SecretFlow的HDataFrame构建方法
h_data = sf.HDataFrame(
{alice: alice_data, bob: bob_data},
aggregator=spu_device,
comparator=spu_device,
)
实践建议
- 数据预处理:在数据库层面完成尽可能多的数据清洗和转换
- 连接安全:确保数据库连接信息的安全存储和使用
- 性能优化:对于大数据量,考虑分批读取或使用数据库原生分页
- 类型一致性:确保各参与方读取的数据类型一致,避免后续计算错误
总结
通过扩展SecretFlow的数据读取能力,使其支持直接从数据库获取数据,可以显著提升框架在实际业务场景中的适用性。这种方案既保持了SecretFlow原有的隐私计算能力,又解决了企业数据源整合的问题,为隐私计算项目的落地提供了更便捷的途径。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.42 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
88
React Native鸿蒙化仓库
JavaScript
216
293
仓颉编程语言测试用例。
Cangjie
34
78
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.68 K
暂无简介
Dart
542
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
592
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
Ascend Extension for PyTorch
Python
82
116