SecretFlow项目:从数据库读取数据构建隐私计算数据框架的实践
2025-07-01 05:15:29作者:盛欣凯Ernestine
背景与需求分析
在隐私计算领域,SecretFlow作为一个重要的分布式隐私计算框架,其数据处理能力直接影响着整个系统的实用性。传统上,SecretFlow主要通过读取CSV文件来获取数据,但在实际生产环境中,企业数据往往存储在各类数据库中,特别是关系型数据库如MySQL。
技术实现方案
数据库连接与数据读取
通过Python的pymysql库可以方便地连接MySQL数据库并读取数据。核心实现包括:
- 建立数据库连接
- 执行SQL查询
- 将结果转换为Pandas DataFrame格式
def connect_to_mysql_and_read_data(database_name, table_name):
connection = pymysql.connect(
host="localhost",
user="username",
password="password",
database=database_name,
)
with connection.cursor() as cursor:
cursor.execute(f"SELECT * FROM {table_name};")
rows = cursor.fetchall()
columns = [desc[0] for desc in cursor.description]
return pd.DataFrame(rows, columns=columns)
构建VDataFrame
SecretFlow中的VDataFrame是纵向分区数据框架,用于表示按特征列分布在不同参与方的数据。从数据库读取数据后,可以通过以下方式构建:
import secretflow as sf
alice = sf.PYU("alice")
v_data = alice(connect_to_mysql_and_read_data)("db_name", "table_name")
数据求交与转换
在隐私计算场景中,经常需要进行多方数据求交(PSI)操作。SecretFlow提供了spu_device.psi_df方法进行求交:
spu_device = sf.SPU(spu_config)
psi_result = spu_device.psi_df(key="uid", dfs=[v_data1, v_data2])
求交结果可以直接用于构建新的VDataFrame,只需将结果分配给各参与方即可。
横向数据合并方案
对于横向分区数据(HDataFrame),即按样本行分布在不同参与方的数据,实现思路类似:
- 各参与方从自己的数据库读取部分数据
- 确保数据结构一致
- 使用SecretFlow的HDataFrame构建方法
h_data = sf.HDataFrame(
{alice: alice_data, bob: bob_data},
aggregator=spu_device,
comparator=spu_device,
)
实践建议
- 数据预处理:在数据库层面完成尽可能多的数据清洗和转换
- 连接安全:确保数据库连接信息的安全存储和使用
- 性能优化:对于大数据量,考虑分批读取或使用数据库原生分页
- 类型一致性:确保各参与方读取的数据类型一致,避免后续计算错误
总结
通过扩展SecretFlow的数据读取能力,使其支持直接从数据库获取数据,可以显著提升框架在实际业务场景中的适用性。这种方案既保持了SecretFlow原有的隐私计算能力,又解决了企业数据源整合的问题,为隐私计算项目的落地提供了更便捷的途径。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255