探索爱与遥感的交汇点:LoveDA——远程感知土地覆盖数据集助力领域适应语义分割
2024-05-21 08:01:48作者:傅爽业Veleda
在人工智能与遥感技术的融合中,LoveDA是一个创新的数据集,旨在推动领域适应语义分割的研究。由华中科技大学的研究团队精心打造,它提供了5987张高空间分辨率(0.3米)的遥感图像,涵盖南京、常州和武汉的城市与乡村环境。
项目简介
LoveDA的核心亮点在于其对城乡地理环境差异的关注。这个数据集不仅适用于基本的语义分割任务,更旨在推进无监督领域适应挑战,以应对多尺度物体、复杂背景样本以及不一致类别分布等问题。这一独特的数据集设计使得模型能够学习到更具普适性的特征,从而在现实世界的应用中表现出更高的准确性和可靠性。
技术分析
LoveDA包含了多元化的图像样本,这些样本经过精细标注,涵盖了7个主要的土地覆盖类别的像素级信息。通过对比训练集和验证集,研究人员可以评估模型在不同地理环境下的泛化能力。数据集提供的预训练模型基于HRNet,展示了一种有效的处理遥感图像的方法。此外,数据集还支持直接在Codalab上提交测试结果,便于全球研究者进行比赛和交流。
应用场景
LoveDA在以下场景中具有广泛的应用潜力:
- 城市规划:帮助预测和管理城市扩张,优化基础设施布局。
- 灾害响应:快速评估洪水、火灾等灾害影响范围,辅助应急救援。
- 农业监测:识别农田类型,评估农作物生长状况,实现精准农业。
- 环境保护:监控森林覆盖率、水资源变化,支持可持续发展决策。
项目特点
- 高质量图像:0.3米的高分辨率确保了图像的细节丰富,利于识别微小目标。
- 城乡对比:跨域特性使得模型能处理各种环境变化,提升应用的广泛性。
- 多样化挑战:多尺度对象、复杂背景和类别不平衡问题提供真实的复杂场景训练。
- 竞赛平台:通过Codalab的比赛,促进学术交流和技术创新。
如果你正在寻找一个推动前沿算法发展的遥感数据集,或者希望解决实际世界中的语义分割和领域适应问题,那么LoveDA无疑是你的理想选择。现在就开始探索LoveDA,开启你的智能遥感之旅吧!
引用LoveDA时,请使用以下参考文献:
@inproceedings{NEURIPS DATASETS AND BENCHMARKS2021_4e732ced,
author = {Wang, Junjue and Zheng, Zhuo and Ma, Ailong and Lu, Xiaoyan and Zhong, Yanfei},
booktitle = {Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks},
editor = {J. Vanschoren and S. Yeung},
pages = {},
publisher = {Curran Associates, Inc.},
title = {LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation},
url = {https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/4e732ced3463d06de0ca9a15b6153677-Paper-round2.pdf},
volume = {1},
year = {2021}
}
@dataset{junjue_wang_2021_5706578,
author = {Junjue Wang and Zhuo Zheng and Ailong Ma and Xiaoyan Lu and Yanfei Zhong},
title = {{Love{DA}}: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation},
month = oct,
year = 2021,
publisher = {Zenodo},
doi = {10.5281/zenodo.5706578},
url = {https://doi.org/10.5281/zenodo.5706578}
}
让我们共同携手,用LoveDA驱动遥感图像处理技术迈向新的高度!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1