探索爱与遥感的交汇点:LoveDA——远程感知土地覆盖数据集助力领域适应语义分割
2024-05-21 08:01:48作者:傅爽业Veleda
在人工智能与遥感技术的融合中,LoveDA是一个创新的数据集,旨在推动领域适应语义分割的研究。由华中科技大学的研究团队精心打造,它提供了5987张高空间分辨率(0.3米)的遥感图像,涵盖南京、常州和武汉的城市与乡村环境。
项目简介
LoveDA的核心亮点在于其对城乡地理环境差异的关注。这个数据集不仅适用于基本的语义分割任务,更旨在推进无监督领域适应挑战,以应对多尺度物体、复杂背景样本以及不一致类别分布等问题。这一独特的数据集设计使得模型能够学习到更具普适性的特征,从而在现实世界的应用中表现出更高的准确性和可靠性。
技术分析
LoveDA包含了多元化的图像样本,这些样本经过精细标注,涵盖了7个主要的土地覆盖类别的像素级信息。通过对比训练集和验证集,研究人员可以评估模型在不同地理环境下的泛化能力。数据集提供的预训练模型基于HRNet,展示了一种有效的处理遥感图像的方法。此外,数据集还支持直接在Codalab上提交测试结果,便于全球研究者进行比赛和交流。
应用场景
LoveDA在以下场景中具有广泛的应用潜力:
- 城市规划:帮助预测和管理城市扩张,优化基础设施布局。
- 灾害响应:快速评估洪水、火灾等灾害影响范围,辅助应急救援。
- 农业监测:识别农田类型,评估农作物生长状况,实现精准农业。
- 环境保护:监控森林覆盖率、水资源变化,支持可持续发展决策。
项目特点
- 高质量图像:0.3米的高分辨率确保了图像的细节丰富,利于识别微小目标。
- 城乡对比:跨域特性使得模型能处理各种环境变化,提升应用的广泛性。
- 多样化挑战:多尺度对象、复杂背景和类别不平衡问题提供真实的复杂场景训练。
- 竞赛平台:通过Codalab的比赛,促进学术交流和技术创新。
如果你正在寻找一个推动前沿算法发展的遥感数据集,或者希望解决实际世界中的语义分割和领域适应问题,那么LoveDA无疑是你的理想选择。现在就开始探索LoveDA,开启你的智能遥感之旅吧!
引用LoveDA时,请使用以下参考文献:
@inproceedings{NEURIPS DATASETS AND BENCHMARKS2021_4e732ced,
author = {Wang, Junjue and Zheng, Zhuo and Ma, Ailong and Lu, Xiaoyan and Zhong, Yanfei},
booktitle = {Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks},
editor = {J. Vanschoren and S. Yeung},
pages = {},
publisher = {Curran Associates, Inc.},
title = {LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation},
url = {https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/4e732ced3463d06de0ca9a15b6153677-Paper-round2.pdf},
volume = {1},
year = {2021}
}
@dataset{junjue_wang_2021_5706578,
author = {Junjue Wang and Zhuo Zheng and Ailong Ma and Xiaoyan Lu and Yanfei Zhong},
title = {{Love{DA}}: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation},
month = oct,
year = 2021,
publisher = {Zenodo},
doi = {10.5281/zenodo.5706578},
url = {https://doi.org/10.5281/zenodo.5706578}
}
让我们共同携手,用LoveDA驱动遥感图像处理技术迈向新的高度!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76