EvolutionAPI在Azure服务器重启后实例丢失问题的分析与解决方案
问题现象描述
在使用EvolutionAPI 2.0.10版本部署在Azure Linux服务器上时,用户报告了一个关键问题:当服务器需要维护或调整而重启后,虽然EvolutionAPI服务能够正常运行,但所有实例数据都会丢失,系统恢复到初始状态。相比之下,1.8.2版本在相同环境下则表现正常,重启后实例数据能够保留。
根本原因分析
经过技术分析,这个问题主要源于Docker容器的特性和配置不当:
-
Docker的默认行为:Docker容器本质上是临时性的(ephemeral),默认情况下不会持久化数据。当容器停止或主机重启时,容器内的数据会丢失。
-
缺少持久化配置:在2.0.10版本的部署中,缺少了必要的持久化配置,特别是:
- 没有为关键目录配置Docker卷(volumes)
- 没有正确配置PostgreSQL作为持久化存储
-
版本差异:1.8.2版本可能使用了不同的存储机制或默认配置,使其在相同环境下表现不同。
解决方案
要解决这个问题,需要从以下几个方面进行配置:
1. Docker卷配置
为EvolutionAPI配置持久化卷是首要解决方案。以下是关键目录的卷配置示例:
volumes:
- evolution_instances:/evolution/instances
- evolution_store:/evolution/store
这两个卷分别用于存储实例数据和持久化存储,确保即使容器重启数据也不会丢失。
2. 数据库持久化配置
除了文件系统级别的持久化,还应该配置数据库持久化:
DATABASE_PROVIDER=postgresql
DATABASE_CONNECTION_URI='postgresql://username:password@host:5432/evolution?schema=public'
使用PostgreSQL作为后端数据库可以确保数据的高可靠性存储。
3. 完整的Docker Compose示例
以下是推荐的完整部署配置:
services:
evolution:
image: atendai/evolution-api:v2.1.2
restart: unless-stopped
ports:
- 4000:8080
volumes:
- evolution_instances:/evolution/instances
- evolution_store:/evolution/store
env_file:
- .env-evolution
command: ["node", "./dist/src/main.js"]
evolution-redis:
image: redis:alpine
restart: unless-stopped
command: redis-server
volumes:
evolution_instances:
evolution_store:
实施建议
-
备份现有数据:在修改配置前,确保备份所有重要数据。
-
逐步迁移:可以先在测试环境验证新的配置方案,确认无误后再应用到生产环境。
-
监控验证:配置完成后,进行重启测试,验证数据是否确实能够持久化。
-
版本升级:考虑升级到最新稳定版本(如v2.1.2),以获取更好的稳定性和功能支持。
总结
通过正确配置Docker卷和数据库持久化,可以确保EvolutionAPI在服务器重启后保留所有实例数据。这个问题不是EvolutionAPI本身的缺陷,而是容器化部署时需要特别注意的配置项。合理的持久化策略不仅能解决当前问题,还能提高系统的整体可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00