Qwen1.5-72B大模型微调中的显存优化策略解析
2025-05-12 05:32:39作者:胡唯隽
在大型语言模型如Qwen1.5-72B的微调实践中,研究人员常会遇到显存资源不足的挑战。本文将以Qwen1.5-72B-chat模型为例,深入探讨LoRA微调过程中的显存优化方案。
问题背景分析
当使用LoRA+Zero2策略对72B参数规模的Qwen1.5模型进行微调时,即使分配了1007GB的显存资源,模型权重的加载过程仍可能超出预期内存限制。这种现象源于大模型特有的内存管理特性:
- 全精度加载开销:默认情况下,PyTorch会以FP32精度完整加载模型权重
- 中间缓存占用:前向传播过程中会产生大量中间变量缓存
- 优化器状态存储:即使使用Zero2策略,仍需要维护部分优化器状态
关键技术解决方案
1. 低内存加载模式
现代transformers库提供了low_cpu_mem_usage
参数,该参数通过以下机制降低内存消耗:
- 延迟加载:仅在需要时加载特定模块的权重
- 分片处理:将大权重矩阵分割加载
- 内存映射:利用磁盘空间作为虚拟内存扩展
2. 混合精度训练优化
结合以下技术可进一步降低显存需求:
- AMP自动混合精度:将部分计算转为FP16
- 梯度检查点:牺牲计算时间换取显存空间
- 激活值压缩:对中间激活值进行有损压缩
3. LoRA适配器优化
针对LoRA微调的特殊优化:
- 稀疏适配器初始化:仅对关键层添加适配器
- 动态秩调整:根据训练进度自动调整LoRA秩
- 量化适配器:对LoRA矩阵进行8-bit量化
实践建议
对于Qwen1.5-72B级别的模型微调,建议采用以下配置组合:
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-72B-chat",
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
同时配合训练参数:
- 使用
gradient_checkpointing
启用梯度检查点 - 设置
fp16=True
启用混合精度训练 - 限制
max_seq_length
减少激活值占用
进阶优化方向
对于极端资源受限的场景,可考虑:
- 模型并行:将模型层拆分到多个设备
- 卸载技术:将暂时不用的参数卸载到CPU
- 选择性微调:仅微调关键注意力层
通过系统性地应用这些优化策略,研究人员可以在有限资源下成功实现对Qwen1.5-72B等超大语言模型的有效微调。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133