DuckDB抽样查询中的DISTINCT与BERNOULLI采样异常分析
2025-05-06 13:56:18作者:瞿蔚英Wynne
问题现象
在使用DuckDB 1.2.0版本时,当在CTE(公共表表达式)中结合使用DISTINCT和BERNOULLI采样方法时,会出现采样结果异常的现象。具体表现为:
- 空结果集出现频率异常高:对一个1000行的表进行1%的BERNOULLI采样,理论上出现空表的概率约为1/23000,但实际观察到的概率接近1/3
- 结果集行数波动异常:采样结果的行数标准差远高于预期值
- 仅在包含DISTINCT操作时出现:直接对源表采样则表现正常
技术背景
BERNOULLI采样是一种概率采样方法,它对表中的每一行独立地以固定概率决定是否包含在结果中。对于1000行的表,1%的采样率期望得到10行结果,标准差约为√(1000×0.01×0.99)≈3.15。
DISTINCT操作会消除表中的重复行,在查询优化器中可能会触发特殊的执行计划。当与BERNOULLI采样结合使用时,在1.2.0版本中出现了优化器处理不当的情况。
问题复现
通过以下Python代码可以稳定复现该问题:
import duckdb
from statistics import mean, stdev
con = duckdb.connect()
sql = """
WITH some_tab AS (
SELECT UNNEST(range(1000)) AS id
),
some_tab_unq AS (
SELECT distinct(id) AS id FROM some_tab
),
sampled AS (
select id from some_tab_unq
USING SAMPLE 1% (bernoulli)
)
select count(*) as n_rows FROM sampled
"""
# 执行500次采样
row_counts = [con.sql(sql).fetchone()[0] for _ in range(500)]
在DuckDB 1.2.0中,结果表现出异常的统计特性:
- 空结果集出现频率高达约30%
- 行数标准差约11.6,远高于理论值3.15
- 最大行数可达50,远高于预期范围
问题根源
该问题源于DuckDB查询优化器在处理包含DISTINCT和BERNOULLI采样的复合查询时,生成的执行计划存在缺陷。具体表现为:
- 采样率计算错误:优化器未能正确传递采样概率参数
- 执行计划优化不当:DISTINCT操作可能触发了不适用于采样场景的优化策略
- 统计信息传递异常:行数估计在查询计划各阶段传递出现偏差
解决方案
DuckDB开发团队已通过提交修复了该问题。修复方案主要涉及:
- 优化DISTINCT与采样操作的组合处理逻辑
- 确保采样概率参数在查询计划各阶段正确传递
- 改进统计信息在复杂查询中的传播机制
使用建议
在等待新版本发布期间,用户可以采取以下临时解决方案:
- 避免在采样前使用DISTINCT操作
- 如果必须去重,考虑先采样再去重
- 降级到1.1.3版本(该版本不受此问题影响)
总结
这个案例展示了数据库查询优化器中边缘情况的复杂性。即使是看似简单的操作组合(DISTINCT+BERNOULLI采样),也可能触发优化器的非预期行为。DuckDB团队快速响应并修复了该问题,体现了开源社区的高效协作。
对于数据分析师和开发者而言,当遇到统计结果异常时,应当:
- 设计最小复现案例
- 检查不同版本的差异
- 考虑操作组合可能带来的边缘效应
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
677
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146