ModelContextProtocol C SDK 中实现长运行操作进度通知的技术解析
在开发基于 ModelContextProtocol (MCP) 规范的服务器端应用时,长运行操作(Long Running Operation)是一个常见需求。本文将深入探讨如何在 C# SDK 中实现这一功能,特别是如何通过进度令牌(progress token)向客户端发送进度通知。
背景与需求
MCP 规范定义了一种标准化的远程过程调用机制,其中长运行操作需要特殊的处理方式。当服务器端执行耗时操作时,客户端需要能够实时了解操作进度,而不是被动等待最终结果。
在 C# SDK 的实现中,开发者发现当前版本无法直接访问请求中的进度令牌(_meta.progressToken),这阻碍了长运行操作通知功能的实现。
技术实现方案
请求元数据解析
MCP 规范在 JSON-RPC 请求中定义了 _meta 字段,其中包含 progressToken 等重要元信息。正确的实现需要:
- 在请求反序列化时保留 _meta 字段
- 通过适当的方式向工具方法暴露这些元数据
C# SDK 的改进
通过分析请求处理流程,我们发现需要在 CallToolRequestParams 类中添加对 _meta 字段的支持。具体实现包括:
public class CallToolRequestParams
{
[JsonProperty("_meta")]
public RequestMeta? Meta { get; set; }
// 其他现有属性...
}
public class RequestMeta
{
[JsonProperty("progressToken")]
public string? ProgressToken { get; set; }
// 其他可能的元数据字段...
}
长运行操作实现示例
基于上述改进,我们可以实现一个完整的长运行操作工具:
[McpServerToolType]
public static class LongRunningTool
{
[McpServerTool]
public static async Task<string> ExecuteLongOperation(
IMcpServer server,
RequestContext<CallToolRequestParams> requestParams,
int totalDuration = 10,
int progressSteps = 5)
{
var stepDuration = totalDuration / progressSteps;
var progressToken = requestParams?.Params?.Meta?.ProgressToken;
for (int currentStep = 1; currentStep <= progressSteps; currentStep++)
{
await Task.Delay(stepDuration * 1000);
if (!string.IsNullOrEmpty(progressToken))
{
await server.SendMessageAsync(new JsonRpcNotification
{
Method = "notifications/progress",
Params = new
{
progressToken,
total = progressSteps,
progress = currentStep
}
});
}
}
return $"操作完成,总耗时{totalDuration}秒,分为{progressSteps}个步骤";
}
}
关键点解析
-
进度通知机制:通过 progressToken 唯一标识每个长运行操作,服务器可以定向发送进度更新
-
通知格式:遵循 MCP 规范,使用 notifications/progress 方法发送结构化进度信息
-
线程安全:异步方法确保不会阻塞服务器主线程
-
错误处理:在实际应用中应添加适当的异常处理和超时机制
最佳实践建议
-
合理设置进度更新频率,避免过于频繁的通知影响性能
-
对于极短时间的操作(秒级以下),可以考虑不实现进度通知
-
在进度通知中包含有意义的描述信息,而不仅仅是百分比
-
考虑实现取消机制,允许客户端中止长运行操作
总结
通过对 C# SDK 的适当扩展,我们能够完整支持 MCP 规范中的长运行操作模式。这种实现既保持了与规范的一致性,又提供了良好的开发者体验。进度通知机制的加入使得构建响应式、用户友好的 MCP 服务成为可能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00