ModelContextProtocol C SDK 中实现长运行操作进度通知的技术解析
在开发基于 ModelContextProtocol (MCP) 规范的服务器端应用时,长运行操作(Long Running Operation)是一个常见需求。本文将深入探讨如何在 C# SDK 中实现这一功能,特别是如何通过进度令牌(progress token)向客户端发送进度通知。
背景与需求
MCP 规范定义了一种标准化的远程过程调用机制,其中长运行操作需要特殊的处理方式。当服务器端执行耗时操作时,客户端需要能够实时了解操作进度,而不是被动等待最终结果。
在 C# SDK 的实现中,开发者发现当前版本无法直接访问请求中的进度令牌(_meta.progressToken),这阻碍了长运行操作通知功能的实现。
技术实现方案
请求元数据解析
MCP 规范在 JSON-RPC 请求中定义了 _meta 字段,其中包含 progressToken 等重要元信息。正确的实现需要:
- 在请求反序列化时保留 _meta 字段
- 通过适当的方式向工具方法暴露这些元数据
C# SDK 的改进
通过分析请求处理流程,我们发现需要在 CallToolRequestParams 类中添加对 _meta 字段的支持。具体实现包括:
public class CallToolRequestParams
{
[JsonProperty("_meta")]
public RequestMeta? Meta { get; set; }
// 其他现有属性...
}
public class RequestMeta
{
[JsonProperty("progressToken")]
public string? ProgressToken { get; set; }
// 其他可能的元数据字段...
}
长运行操作实现示例
基于上述改进,我们可以实现一个完整的长运行操作工具:
[McpServerToolType]
public static class LongRunningTool
{
[McpServerTool]
public static async Task<string> ExecuteLongOperation(
IMcpServer server,
RequestContext<CallToolRequestParams> requestParams,
int totalDuration = 10,
int progressSteps = 5)
{
var stepDuration = totalDuration / progressSteps;
var progressToken = requestParams?.Params?.Meta?.ProgressToken;
for (int currentStep = 1; currentStep <= progressSteps; currentStep++)
{
await Task.Delay(stepDuration * 1000);
if (!string.IsNullOrEmpty(progressToken))
{
await server.SendMessageAsync(new JsonRpcNotification
{
Method = "notifications/progress",
Params = new
{
progressToken,
total = progressSteps,
progress = currentStep
}
});
}
}
return $"操作完成,总耗时{totalDuration}秒,分为{progressSteps}个步骤";
}
}
关键点解析
-
进度通知机制:通过 progressToken 唯一标识每个长运行操作,服务器可以定向发送进度更新
-
通知格式:遵循 MCP 规范,使用 notifications/progress 方法发送结构化进度信息
-
线程安全:异步方法确保不会阻塞服务器主线程
-
错误处理:在实际应用中应添加适当的异常处理和超时机制
最佳实践建议
-
合理设置进度更新频率,避免过于频繁的通知影响性能
-
对于极短时间的操作(秒级以下),可以考虑不实现进度通知
-
在进度通知中包含有意义的描述信息,而不仅仅是百分比
-
考虑实现取消机制,允许客户端中止长运行操作
总结
通过对 C# SDK 的适当扩展,我们能够完整支持 MCP 规范中的长运行操作模式。这种实现既保持了与规范的一致性,又提供了良好的开发者体验。进度通知机制的加入使得构建响应式、用户友好的 MCP 服务成为可能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00