Kubeflow Training Operator 中 Volcano 自定义队列配置问题解析
问题背景
在使用 Kubeflow Training Operator 运行 MPIJob 时,发现即使通过 runPolicy.schedulingPolicy.queue 指定了自定义队列(如 production),Volcano 调度器仍然会将 PodGroup 分配到默认的 default 队列中,导致自定义队列配置失效。
问题本质
这个问题的根本原因在于 Training Operator 的默认配置行为。Training Operator 默认使用 Kueue 作为组调度器(gang scheduler),而非 Volcano。因此,即使我们在 Pod 模板中指定了 schedulerName: volcano,Training Operator 仍然会优先使用 Kueue 相关的配置来处理 runPolicy 字段。
解决方案
要使 Volcano 调度器正常工作并识别自定义队列配置,需要在部署 Training Operator 时显式指定组调度器为 Volcano。具体方法是在 Training Operator 的部署配置中添加以下参数:
args:
- '--gang-scheduler-name=volcano'
这个参数会告诉 Training Operator 使用 Volcano 作为组调度器,从而确保 runPolicy.schedulingPolicy.queue 中指定的队列名称能够正确传递给 Volcano 调度器。
技术细节
-
Training Operator 的调度机制:Training Operator 支持多种组调度器,包括 Kueue 和 Volcano。默认情况下使用 Kueue,需要通过参数显式切换。
-
Volcano 队列工作原理:Volcano 的队列机制用于资源隔离和优先级控制。正确配置队列可以确保作业获得预期的资源配额和调度优先级。
-
MPIJob 的调度流程:当创建 MPIJob 时,Training Operator 会根据配置创建对应的 PodGroup 资源。PodGroup 的队列属性决定了作业将被调度到哪个资源池中。
最佳实践
-
在部署 Training Operator 前,明确规划好需要使用的调度器类型。
-
如果使用 Volcano,确保在部署时正确配置
--gang-scheduler-name=volcano参数。 -
创建队列资源时,注意设置合理的资源配额和优先级,避免资源争抢。
-
对于生产环境,建议为不同团队或项目创建独立的队列,实现资源隔离。
总结
Kubeflow Training Operator 提供了灵活的调度器配置选项,但需要正确理解其默认行为和配置方式。通过合理配置组调度器参数,可以充分发挥 Volcano 调度器的队列管理功能,实现更精细化的资源调度控制。这个问题也提醒我们,在使用开源组件时,仔细阅读文档和理解默认配置非常重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00