Kubeflow Training Operator 中 Volcano 自定义队列配置问题解析
问题背景
在使用 Kubeflow Training Operator 运行 MPIJob 时,发现即使通过 runPolicy.schedulingPolicy.queue 指定了自定义队列(如 production),Volcano 调度器仍然会将 PodGroup 分配到默认的 default 队列中,导致自定义队列配置失效。
问题本质
这个问题的根本原因在于 Training Operator 的默认配置行为。Training Operator 默认使用 Kueue 作为组调度器(gang scheduler),而非 Volcano。因此,即使我们在 Pod 模板中指定了 schedulerName: volcano,Training Operator 仍然会优先使用 Kueue 相关的配置来处理 runPolicy 字段。
解决方案
要使 Volcano 调度器正常工作并识别自定义队列配置,需要在部署 Training Operator 时显式指定组调度器为 Volcano。具体方法是在 Training Operator 的部署配置中添加以下参数:
args:
- '--gang-scheduler-name=volcano'
这个参数会告诉 Training Operator 使用 Volcano 作为组调度器,从而确保 runPolicy.schedulingPolicy.queue 中指定的队列名称能够正确传递给 Volcano 调度器。
技术细节
-
Training Operator 的调度机制:Training Operator 支持多种组调度器,包括 Kueue 和 Volcano。默认情况下使用 Kueue,需要通过参数显式切换。
-
Volcano 队列工作原理:Volcano 的队列机制用于资源隔离和优先级控制。正确配置队列可以确保作业获得预期的资源配额和调度优先级。
-
MPIJob 的调度流程:当创建 MPIJob 时,Training Operator 会根据配置创建对应的 PodGroup 资源。PodGroup 的队列属性决定了作业将被调度到哪个资源池中。
最佳实践
-
在部署 Training Operator 前,明确规划好需要使用的调度器类型。
-
如果使用 Volcano,确保在部署时正确配置
--gang-scheduler-name=volcano参数。 -
创建队列资源时,注意设置合理的资源配额和优先级,避免资源争抢。
-
对于生产环境,建议为不同团队或项目创建独立的队列,实现资源隔离。
总结
Kubeflow Training Operator 提供了灵活的调度器配置选项,但需要正确理解其默认行为和配置方式。通过合理配置组调度器参数,可以充分发挥 Volcano 调度器的队列管理功能,实现更精细化的资源调度控制。这个问题也提醒我们,在使用开源组件时,仔细阅读文档和理解默认配置非常重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00