NLog配置:如何过滤特定日志信息
在ASP.NET Core应用开发中,日志记录是一个非常重要的环节。NLog作为.NET生态中广泛使用的日志记录框架,提供了强大的日志过滤和路由功能。本文将深入探讨如何通过NLog配置来过滤特定的日志信息,特别是针对Entity Framework Core产生的数据库命令日志。
问题背景
在开发ASP.NET Core应用时,开发者经常会遇到Entity Framework Core产生大量数据库命令日志的情况。这些日志通常以"Executed DbCommand"开头,包含了SQL查询和执行时间等信息。虽然这些信息在调试时很有用,但在生产环境或日常开发中可能会造成日志冗余,影响关键信息的查找。
NLog配置解析
NLog提供了多种方式来控制日志的输出,包括日志级别设置、日志路由规则和过滤器等。让我们来看一个典型的配置示例:
<nlog>
<targets>
<target type="ColoredConsole"
name="lifetimeConsole"
layout="${date:format=yyyy-MM-dd HH\:mm\:ss zzz} [${level:uppercase=true}] [${logger}] ${message} ${exception:format=tostring}" />
</targets>
<rules>
<logger name="System.*" finalMinLevel="Warn" />
<logger name="System.Net.Http.*" finalMinLevel="Warn" />
<logger name="Microsoft.*" finalMinLevel="Warn" />
<logger name="Microsoft.Hosting.Lifetime" finalMinLevel="Info" />
<logger name="Microsoft.EntityFrameworkCore.*" finalMinLevel="Info" />
<logger name="Microsoft.EntityFrameworkCore.Database.Command" minLevel="Info" final="true" writeTo="lifetimeConsole">
<filters defaultAction="Log">
<when condition="contains('${message}','Executed DbCommand')" action="IgnoreFinal" />
</filters>
</logger>
<logger name="*" minlevel="Info" writeTo="lifetimeConsole" />
</rules>
</nlog>
关键配置点解析
-
finalMinLevel属性:这个属性设置了一个最低日志级别阈值,低于该级别的日志将被完全忽略。与minLevel不同,finalMinLevel会阻止日志继续匹配后续的规则。
-
过滤器使用:在特定logger规则中使用
<filters>
元素可以更精细地控制日志输出。IgnoreFinal
动作会完全阻止匹配的日志消息被记录。 -
条件表达式:
contains('${message}','Executed DbCommand')
是一个条件表达式,用于检查日志消息是否包含特定字符串。 -
logger命名空间匹配:NLog支持使用通配符(*)来匹配logger名称空间,这使得我们可以针对特定类库的日志进行统一管理。
最佳实践建议
-
分层配置:建议按照从具体到一般的顺序排列logger规则,这样更具体的规则会优先匹配。
-
调试配置:在调试NLog配置时,可以启用内部日志功能,这有助于理解日志是如何被路由和过滤的。
-
谨慎使用final属性:final属性会阻止日志继续匹配后续规则,使用时需要确保不会意外屏蔽需要的日志。
-
考虑性能影响:复杂的过滤条件可能会对应用性能产生轻微影响,在生产环境中应进行适当测试。
通过合理配置NLog,开发者可以有效地管理应用日志输出,确保日志系统既提供足够的信息用于调试和问题排查,又不会因为过多冗余信息而影响使用体验。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









