AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.5版本
AWS Deep Learning Containers(DLC)项目为机器学习开发者提供了预构建的深度学习环境容器镜像,这些镜像经过优化并预装了主流深度学习框架及其依赖项。近日,该项目发布了针对ARM64架构的PyTorch推理镜像v1.5版本,支持在EC2实例上运行PyTorch 2.5.1的推理任务。
镜像版本概览
本次发布包含两个主要镜像版本,分别针对CPU和GPU计算环境:
-
CPU版本:基于Ubuntu 22.04系统,预装PyTorch 2.5.1(CPU版本)、Python 3.11环境及相关依赖库。该镜像适用于不需要GPU加速的推理场景。
-
GPU版本:同样基于Ubuntu 22.04系统,预装PyTorch 2.5.1(CUDA 12.4版本)、Python 3.11环境及GPU相关驱动和库。该镜像针对NVIDIA GPU进行了优化,适合需要GPU加速的推理任务。
关键技术组件
两个镜像版本都包含了PyTorch生态系统的核心组件:
- PyTorch主框架:2.5.1版本,针对ARM64架构进行了优化编译
- TorchVision:0.20.1版本,提供计算机视觉相关功能
- TorchAudio:2.5.1版本,支持音频处理任务
- TorchServe:0.12.0版本,用于模型部署和服务
- Torch Model Archiver:0.12.0版本,用于模型打包
此外,镜像中还预装了常用的数据处理和科学计算库:
- NumPy 2.1.3:高性能多维数组计算库
- SciPy 1.14.1:科学计算工具集
- OpenCV 4.10.0:计算机视觉库
- Pandas 2.2.3(仅GPU版本):数据分析工具
系统级优化
AWS对这些镜像进行了系统级的优化:
-
编译器优化:使用了GCC 11工具链,包括libgcc-11-dev和libstdc++-11-dev等组件,确保代码在ARM64架构上的最佳性能表现。
-
CUDA支持:GPU版本集成了CUDA 12.4工具包和cuDNN库,为PyTorch提供了高效的GPU计算能力。
-
开发工具:预装了Emacs等开发工具,方便用户在容器内进行代码编辑和调试。
适用场景
这些ARM64架构的PyTorch推理镜像特别适合以下场景:
- 边缘计算:在ARM架构的设备上部署轻量级推理模型
- 成本优化:利用ARM实例通常具有的性价比优势
- 能效优先:需要低功耗运行的推理应用
- 模型服务:使用TorchServe构建可扩展的模型服务
版本兼容性
开发者可以根据需要选择不同的标签版本:
- 固定版本标签(如2.5.1-cpu-py311-ubuntu22.04-ec2-v1.5)确保环境稳定性
- 主版本标签(如2.5-cpu-py311-ec2)方便获取该主版本下的最新更新
AWS Deep Learning Containers的这些PyTorch ARM64镜像为开发者提供了开箱即用的深度学习推理环境,大大简化了模型部署的复杂度,同时保证了性能和稳定性。无论是研究原型还是生产部署,这些预构建的容器镜像都能显著提高开发效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00