AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.5版本
AWS Deep Learning Containers(DLC)项目为机器学习开发者提供了预构建的深度学习环境容器镜像,这些镜像经过优化并预装了主流深度学习框架及其依赖项。近日,该项目发布了针对ARM64架构的PyTorch推理镜像v1.5版本,支持在EC2实例上运行PyTorch 2.5.1的推理任务。
镜像版本概览
本次发布包含两个主要镜像版本,分别针对CPU和GPU计算环境:
-
CPU版本:基于Ubuntu 22.04系统,预装PyTorch 2.5.1(CPU版本)、Python 3.11环境及相关依赖库。该镜像适用于不需要GPU加速的推理场景。
-
GPU版本:同样基于Ubuntu 22.04系统,预装PyTorch 2.5.1(CUDA 12.4版本)、Python 3.11环境及GPU相关驱动和库。该镜像针对NVIDIA GPU进行了优化,适合需要GPU加速的推理任务。
关键技术组件
两个镜像版本都包含了PyTorch生态系统的核心组件:
- PyTorch主框架:2.5.1版本,针对ARM64架构进行了优化编译
- TorchVision:0.20.1版本,提供计算机视觉相关功能
- TorchAudio:2.5.1版本,支持音频处理任务
- TorchServe:0.12.0版本,用于模型部署和服务
- Torch Model Archiver:0.12.0版本,用于模型打包
此外,镜像中还预装了常用的数据处理和科学计算库:
- NumPy 2.1.3:高性能多维数组计算库
- SciPy 1.14.1:科学计算工具集
- OpenCV 4.10.0:计算机视觉库
- Pandas 2.2.3(仅GPU版本):数据分析工具
系统级优化
AWS对这些镜像进行了系统级的优化:
-
编译器优化:使用了GCC 11工具链,包括libgcc-11-dev和libstdc++-11-dev等组件,确保代码在ARM64架构上的最佳性能表现。
-
CUDA支持:GPU版本集成了CUDA 12.4工具包和cuDNN库,为PyTorch提供了高效的GPU计算能力。
-
开发工具:预装了Emacs等开发工具,方便用户在容器内进行代码编辑和调试。
适用场景
这些ARM64架构的PyTorch推理镜像特别适合以下场景:
- 边缘计算:在ARM架构的设备上部署轻量级推理模型
- 成本优化:利用ARM实例通常具有的性价比优势
- 能效优先:需要低功耗运行的推理应用
- 模型服务:使用TorchServe构建可扩展的模型服务
版本兼容性
开发者可以根据需要选择不同的标签版本:
- 固定版本标签(如2.5.1-cpu-py311-ubuntu22.04-ec2-v1.5)确保环境稳定性
- 主版本标签(如2.5-cpu-py311-ec2)方便获取该主版本下的最新更新
AWS Deep Learning Containers的这些PyTorch ARM64镜像为开发者提供了开箱即用的深度学习推理环境,大大简化了模型部署的复杂度,同时保证了性能和稳定性。无论是研究原型还是生产部署,这些预构建的容器镜像都能显著提高开发效率。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00