Garnet项目v1.0.49版本发布:网络层优化与Lua脚本增强
Garnet是微软研究院开发的一款高性能键值存储系统,它兼容Redis协议并提供更优的性能表现。该项目采用了创新的架构设计,特别适合需要低延迟、高吞吐量的应用场景。近日,Garnet发布了v1.0.49版本,带来了一系列重要的性能优化和新功能。
网络层全面升级
本次版本最显著的改进是对网络层的全面重构。开发团队将同步网络处理逻辑转换为异步模式,这一改变显著提升了系统的并发处理能力。在网络密集型场景下,新的异步网络层能够更高效地利用系统资源,减少线程阻塞,从而提供更高的吞吐量和更低的延迟。
为了验证网络层的性能,团队特别设计了网络基准测试(BDN),使用批处理大小为1的配置来专门测试网络层的极限性能。这种测试方法能够更准确地反映网络层在高负载下的表现,为后续优化提供了可靠的数据支持。
Lua脚本引擎优化
Lua脚本支持是Garnet的重要特性之一,本次更新对Lua脚本引擎进行了多方面的改进:
- 内存分配优化:减少了脚本执行过程中的内存分配次数,降低了GC压力
- 性能提升:通过优化脚本编译和执行流程,提高了脚本运行速度
- 正确性增强:修复了若干边界条件下的脚本执行问题,提高了稳定性
团队还更新了与Lua脚本相关的测试用例和预期值,确保新版本的脚本行为符合预期。这些改进使得Garnet在处理复杂业务逻辑时更加高效可靠。
新增命令与兼容性增强
为提升与Redis的兼容性,v1.0.49版本新增了多个集合操作命令:
- ZUNION和ZUNIONSTORE:支持有序集合的并集操作
- ZINTER、ZINTERCARD和ZINTERSTORE:支持有序集合的交集操作
这些命令的加入使得Garnet能够更好地兼容现有的Redis应用,降低了迁移成本。开发团队特别注重这些新命令的性能表现,确保它们在高负载环境下仍能保持稳定的响应速度。
基准测试工具完善
本次更新还加强了基准测试工具(BDN)的功能:
- 新增了Network.BasicOperations和Network.RawStringOperations测试场景
- 统一了性能指标的计量单位,全部使用字节(Byte)作为标准
- 恢复了之前被意外移除的Operations.CustomOperations测试项
- 更新了Operations.ObjectOperations的预期基准值
这些改进使得性能测试更加全面和准确,帮助开发者更好地评估系统在不同工作负载下的表现。
跨平台支持
Garnet继续保持优秀的跨平台特性,v1.0.49版本提供了针对多种操作系统和架构的预编译包:
- Linux (x64和ARM64)
- macOS (x64和ARM64)
- Windows (x64和ARM64)
特别是Windows平台还提供了ReadyToRun格式的发布包,这种预编译格式能够减少应用程序启动时间,提高运行效率。
总结
Garnet v1.0.49版本在网络性能、Lua脚本支持和命令兼容性方面都取得了显著进步。异步网络层的引入为高并发场景提供了更好的基础,Lua脚本引擎的优化则增强了处理复杂业务逻辑的能力。随着新命令的加入和基准测试工具的完善,Garnet正逐步成为一个更成熟、更可靠的键值存储解决方案。
对于正在寻找高性能存储系统的开发者来说,这个版本值得关注和评估。特别是那些需要兼容Redis协议同时又追求更高性能的应用场景,Garnet提供了一个有吸引力的选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00