MediaPipe项目中HandLandmarker与draw_landmarks的兼容性问题解析
2025-05-05 10:02:54作者:柯茵沙
问题背景
在使用MediaPipe的HandLandmarker进行手部关键点检测时,开发者可能会遇到一个常见问题:当尝试使用draw_landmarks函数可视化检测结果时,程序会抛出错误。这个问题主要出现在MacOS系统上,使用Python语言开发时。
问题现象
开发者在使用HandLandmarker检测手部关键点后,尝试使用draw_landmarks函数绘制检测结果时,会遇到两种不同类型的错误:
- 第一种错误提示"AttributeError: 'list' object has no attribute 'landmark'"
- 第二种错误提示"AttributeError: 'Landmark' object has no attribute 'HasField'"
这些错误表明,HandLandmarker返回的结果格式与draw_landmarks函数期望的输入格式不兼容。
问题根源
经过分析,这个问题主要有两个原因:
-
API版本不匹配:MediaPipe的任务API(Tasks API)和解决方案API(Solutions API)使用了不同的数据结构格式。HandLandmarker属于较新的任务API,而draw_landmarks函数最初是为解决方案API设计的。
-
Protobuf版本冲突:MediaPipe 0.10.11版本与Protobuf 5.x版本存在兼容性问题,导致数据类型转换失败。
解决方案
1. 正确的数据转换方法
要解决这个问题,需要将HandLandmarker返回的结果转换为draw_landmarks能够识别的格式。以下是推荐的解决方案:
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
2. 版本兼容性调整
如果上述方法仍然出现问题,可以尝试以下版本组合:
- 降级MediaPipe到0.10.9版本,同时使用Protobuf 3.x
- 升级到MediaPipe 0.10.10或0.10.11版本,同时使用Protobuf 5.x
完整示例代码
以下是经过验证可用的完整代码示例:
import cv2
import numpy as np
from mediapipe import Image, ImageFormat
from mediapipe.tasks.python.vision import HandLandmarker, HandLandmarkerOptions, RunningMode
from mediapipe.tasks.python import BaseOptions
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
# 配置HandLandmarker
base_options = BaseOptions(model_asset_path='hand_landmarker.task')
options = HandLandmarkerOptions(
base_options=base_options,
num_hands=2,
min_hand_detection_confidence=0.1,
min_tracking_confidence=0.1,
running_mode=RunningMode.IMAGE
)
detector = HandLandmarker.create_from_options(options)
# 初始化摄像头
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("无法打开摄像头")
exit(1)
while True:
success, frame = cap.read()
if not success:
break
frame = cv2.flip(frame, 1)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 处理图像
mp_image = Image(image_format=ImageFormat.SRGB, data=rgb_frame)
results = detector.detect(mp_image)
# 绘制关键点
if results:
annotated_image = draw_landmarks_on_image(mp_image.numpy_view(), results)
bgr_frame = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)
cv2.imshow("手部关键点检测", bgr_frame)
if cv2.waitKey(1) & 0xFF == 27: # ESC键退出
break
cap.release()
cv2.destroyAllWindows()
总结
在使用MediaPipe进行手部关键点检测时,开发者需要注意新旧API之间的兼容性问题。通过正确转换数据类型和选择合适的版本组合,可以顺利实现手部关键点的检测和可视化。这个问题也提醒我们,在使用开源库时,要特别注意不同版本之间的兼容性,特别是在涉及数据序列化和反序列化的情况下。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135