MediaPipe项目中HandLandmarker与draw_landmarks的兼容性问题解析
2025-05-05 12:34:45作者:柯茵沙
问题背景
在使用MediaPipe的HandLandmarker进行手部关键点检测时,开发者可能会遇到一个常见问题:当尝试使用draw_landmarks函数可视化检测结果时,程序会抛出错误。这个问题主要出现在MacOS系统上,使用Python语言开发时。
问题现象
开发者在使用HandLandmarker检测手部关键点后,尝试使用draw_landmarks函数绘制检测结果时,会遇到两种不同类型的错误:
- 第一种错误提示"AttributeError: 'list' object has no attribute 'landmark'"
- 第二种错误提示"AttributeError: 'Landmark' object has no attribute 'HasField'"
这些错误表明,HandLandmarker返回的结果格式与draw_landmarks函数期望的输入格式不兼容。
问题根源
经过分析,这个问题主要有两个原因:
-
API版本不匹配:MediaPipe的任务API(Tasks API)和解决方案API(Solutions API)使用了不同的数据结构格式。HandLandmarker属于较新的任务API,而draw_landmarks函数最初是为解决方案API设计的。
-
Protobuf版本冲突:MediaPipe 0.10.11版本与Protobuf 5.x版本存在兼容性问题,导致数据类型转换失败。
解决方案
1. 正确的数据转换方法
要解决这个问题,需要将HandLandmarker返回的结果转换为draw_landmarks能够识别的格式。以下是推荐的解决方案:
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
2. 版本兼容性调整
如果上述方法仍然出现问题,可以尝试以下版本组合:
- 降级MediaPipe到0.10.9版本,同时使用Protobuf 3.x
- 升级到MediaPipe 0.10.10或0.10.11版本,同时使用Protobuf 5.x
完整示例代码
以下是经过验证可用的完整代码示例:
import cv2
import numpy as np
from mediapipe import Image, ImageFormat
from mediapipe.tasks.python.vision import HandLandmarker, HandLandmarkerOptions, RunningMode
from mediapipe.tasks.python import BaseOptions
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
# 配置HandLandmarker
base_options = BaseOptions(model_asset_path='hand_landmarker.task')
options = HandLandmarkerOptions(
base_options=base_options,
num_hands=2,
min_hand_detection_confidence=0.1,
min_tracking_confidence=0.1,
running_mode=RunningMode.IMAGE
)
detector = HandLandmarker.create_from_options(options)
# 初始化摄像头
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("无法打开摄像头")
exit(1)
while True:
success, frame = cap.read()
if not success:
break
frame = cv2.flip(frame, 1)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 处理图像
mp_image = Image(image_format=ImageFormat.SRGB, data=rgb_frame)
results = detector.detect(mp_image)
# 绘制关键点
if results:
annotated_image = draw_landmarks_on_image(mp_image.numpy_view(), results)
bgr_frame = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)
cv2.imshow("手部关键点检测", bgr_frame)
if cv2.waitKey(1) & 0xFF == 27: # ESC键退出
break
cap.release()
cv2.destroyAllWindows()
总结
在使用MediaPipe进行手部关键点检测时,开发者需要注意新旧API之间的兼容性问题。通过正确转换数据类型和选择合适的版本组合,可以顺利实现手部关键点的检测和可视化。这个问题也提醒我们,在使用开源库时,要特别注意不同版本之间的兼容性,特别是在涉及数据序列化和反序列化的情况下。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8