MediaPipe项目中HandLandmarker与draw_landmarks的兼容性问题解析
2025-05-05 10:02:54作者:柯茵沙
问题背景
在使用MediaPipe的HandLandmarker进行手部关键点检测时,开发者可能会遇到一个常见问题:当尝试使用draw_landmarks函数可视化检测结果时,程序会抛出错误。这个问题主要出现在MacOS系统上,使用Python语言开发时。
问题现象
开发者在使用HandLandmarker检测手部关键点后,尝试使用draw_landmarks函数绘制检测结果时,会遇到两种不同类型的错误:
- 第一种错误提示"AttributeError: 'list' object has no attribute 'landmark'"
- 第二种错误提示"AttributeError: 'Landmark' object has no attribute 'HasField'"
这些错误表明,HandLandmarker返回的结果格式与draw_landmarks函数期望的输入格式不兼容。
问题根源
经过分析,这个问题主要有两个原因:
-
API版本不匹配:MediaPipe的任务API(Tasks API)和解决方案API(Solutions API)使用了不同的数据结构格式。HandLandmarker属于较新的任务API,而draw_landmarks函数最初是为解决方案API设计的。
-
Protobuf版本冲突:MediaPipe 0.10.11版本与Protobuf 5.x版本存在兼容性问题,导致数据类型转换失败。
解决方案
1. 正确的数据转换方法
要解决这个问题,需要将HandLandmarker返回的结果转换为draw_landmarks能够识别的格式。以下是推荐的解决方案:
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
2. 版本兼容性调整
如果上述方法仍然出现问题,可以尝试以下版本组合:
- 降级MediaPipe到0.10.9版本,同时使用Protobuf 3.x
- 升级到MediaPipe 0.10.10或0.10.11版本,同时使用Protobuf 5.x
完整示例代码
以下是经过验证可用的完整代码示例:
import cv2
import numpy as np
from mediapipe import Image, ImageFormat
from mediapipe.tasks.python.vision import HandLandmarker, HandLandmarkerOptions, RunningMode
from mediapipe.tasks.python import BaseOptions
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
# 配置HandLandmarker
base_options = BaseOptions(model_asset_path='hand_landmarker.task')
options = HandLandmarkerOptions(
base_options=base_options,
num_hands=2,
min_hand_detection_confidence=0.1,
min_tracking_confidence=0.1,
running_mode=RunningMode.IMAGE
)
detector = HandLandmarker.create_from_options(options)
# 初始化摄像头
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("无法打开摄像头")
exit(1)
while True:
success, frame = cap.read()
if not success:
break
frame = cv2.flip(frame, 1)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 处理图像
mp_image = Image(image_format=ImageFormat.SRGB, data=rgb_frame)
results = detector.detect(mp_image)
# 绘制关键点
if results:
annotated_image = draw_landmarks_on_image(mp_image.numpy_view(), results)
bgr_frame = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)
cv2.imshow("手部关键点检测", bgr_frame)
if cv2.waitKey(1) & 0xFF == 27: # ESC键退出
break
cap.release()
cv2.destroyAllWindows()
总结
在使用MediaPipe进行手部关键点检测时,开发者需要注意新旧API之间的兼容性问题。通过正确转换数据类型和选择合适的版本组合,可以顺利实现手部关键点的检测和可视化。这个问题也提醒我们,在使用开源库时,要特别注意不同版本之间的兼容性,特别是在涉及数据序列化和反序列化的情况下。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250