MediaPipe项目中HandLandmarker与draw_landmarks的兼容性问题解析
2025-05-05 14:17:52作者:柯茵沙
问题背景
在使用MediaPipe的HandLandmarker进行手部关键点检测时,开发者可能会遇到一个常见问题:当尝试使用draw_landmarks函数可视化检测结果时,程序会抛出错误。这个问题主要出现在MacOS系统上,使用Python语言开发时。
问题现象
开发者在使用HandLandmarker检测手部关键点后,尝试使用draw_landmarks函数绘制检测结果时,会遇到两种不同类型的错误:
- 第一种错误提示"AttributeError: 'list' object has no attribute 'landmark'"
- 第二种错误提示"AttributeError: 'Landmark' object has no attribute 'HasField'"
这些错误表明,HandLandmarker返回的结果格式与draw_landmarks函数期望的输入格式不兼容。
问题根源
经过分析,这个问题主要有两个原因:
-
API版本不匹配:MediaPipe的任务API(Tasks API)和解决方案API(Solutions API)使用了不同的数据结构格式。HandLandmarker属于较新的任务API,而draw_landmarks函数最初是为解决方案API设计的。
-
Protobuf版本冲突:MediaPipe 0.10.11版本与Protobuf 5.x版本存在兼容性问题,导致数据类型转换失败。
解决方案
1. 正确的数据转换方法
要解决这个问题,需要将HandLandmarker返回的结果转换为draw_landmarks能够识别的格式。以下是推荐的解决方案:
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
2. 版本兼容性调整
如果上述方法仍然出现问题,可以尝试以下版本组合:
- 降级MediaPipe到0.10.9版本,同时使用Protobuf 3.x
- 升级到MediaPipe 0.10.10或0.10.11版本,同时使用Protobuf 5.x
完整示例代码
以下是经过验证可用的完整代码示例:
import cv2
import numpy as np
from mediapipe import Image, ImageFormat
from mediapipe.tasks.python.vision import HandLandmarker, HandLandmarkerOptions, RunningMode
from mediapipe.tasks.python import BaseOptions
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z)
for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style()
)
return annotated_image
# 配置HandLandmarker
base_options = BaseOptions(model_asset_path='hand_landmarker.task')
options = HandLandmarkerOptions(
base_options=base_options,
num_hands=2,
min_hand_detection_confidence=0.1,
min_tracking_confidence=0.1,
running_mode=RunningMode.IMAGE
)
detector = HandLandmarker.create_from_options(options)
# 初始化摄像头
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("无法打开摄像头")
exit(1)
while True:
success, frame = cap.read()
if not success:
break
frame = cv2.flip(frame, 1)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 处理图像
mp_image = Image(image_format=ImageFormat.SRGB, data=rgb_frame)
results = detector.detect(mp_image)
# 绘制关键点
if results:
annotated_image = draw_landmarks_on_image(mp_image.numpy_view(), results)
bgr_frame = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)
cv2.imshow("手部关键点检测", bgr_frame)
if cv2.waitKey(1) & 0xFF == 27: # ESC键退出
break
cap.release()
cv2.destroyAllWindows()
总结
在使用MediaPipe进行手部关键点检测时,开发者需要注意新旧API之间的兼容性问题。通过正确转换数据类型和选择合适的版本组合,可以顺利实现手部关键点的检测和可视化。这个问题也提醒我们,在使用开源库时,要特别注意不同版本之间的兼容性,特别是在涉及数据序列化和反序列化的情况下。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218