Dagger 2.55 发布:支持Jakarta Provider与绑定图修复
关于Dagger依赖注入框架
Dagger是一个由Google维护的轻量级依赖注入框架,它通过编译时代码生成的方式实现依赖注入,避免了传统依赖注入框架在运行时带来的性能开销。Dagger特别适合Android开发,但也可用于任何Java/Kotlin项目。其核心优势在于严格的依赖关系检查和高效的代码生成机制。
Dagger 2.55版本重要更新
最新发布的Dagger 2.55版本带来了两个主要变化:对Jakarta Provider的支持以及绑定图相关问题的修复。
1. Jakarta Provider支持
在依赖注入中,Provider模式是一种延迟获取依赖项的方式。Dagger原本支持的是javax.inject.Provider接口,而2.55版本新增了对jakarta.inject.Provider的支持。
技术背景:
Jakarta EE是Java EE的新名称,随着Java EE从Oracle转移到Eclipse基金会,相关规范包名也从javax变更为jakarta。Dagger的这一更新保持了与现代Java生态系统的兼容性。
使用注意:
- 现在可以在任何使用
javax.inject.Provider的地方使用jakarta.inject.Provider - 这是一个潜在的破坏性变更,因为现在禁止直接提供
jakarta.inject.Provider类型,这与对javax.inject.Provider的限制一致
迁移建议:
如果项目正在从Java EE迁移到Jakarta EE,可以逐步将Provider引用从javax包迁移到jakarta包,Dagger 2.55将同时支持这两种形式。
2. 绑定图修复
Dagger 2.55修复了多个与绑定图相关的问题,这些修复可以显著改善一些令人困惑的错误消息。
新特性说明:
通过编译器选项-Adagger.useBindingGraphFix=ENABLED可以启用这些修复。考虑到这可能是一个破坏性变更,默认情况下该选项被设置为"disabled"。
技术细节: 绑定图是Dagger在编译时构建的依赖关系图,它描述了各个依赖项之间的关系。之前的版本在某些边缘情况下可能会产生不准确的绑定图,导致:
- 错误的依赖循环检测
- 不准确的缺失绑定错误
- 混淆的限定符冲突报告
未来计划: Google计划在未来的版本中将此修复设为默认启用,并最终移除该标志。开发者可以现在就开始测试这些修复,为未来的平滑升级做准备。
其他改进
ProGuard/R8支持增强
修复了增量处理中LazyClassKey ProGuard文件的问题,通过将原始元素添加到writeResource调用中。这一改进使得使用代码混淆工具时能更准确地保留必要的依赖注入类。
升级建议
对于现有项目升级到Dagger 2.55:
- 如果使用了Provider模式,检查是否有直接提供Provider类型的情况
- 考虑测试绑定图修复功能,评估对项目的影响
- 对于Android项目,验证ProGuard/R8配置是否仍然按预期工作
对于新项目,建议直接采用2.55版本并启用绑定图修复功能,以获得更稳定的依赖注入体验。
Dagger持续改进其核心功能,同时保持向后兼容性,这使得它成为Java/Kotlin生态系统中依赖注入的首选解决方案之一。2.55版本的这些改进进一步巩固了其地位,特别是在现代Java EE/Jakarta EE环境中的应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00