RL-Factory 项目亮点解析
2025-05-26 07:15:31作者:廉彬冶Miranda
1. 项目的基础介绍
RL-Factory 是一个由 Simple-Efficient 团队开发的易于使用且高效的强化学习后训练框架,专为代理学习设计。该框架将环境与强化学习后训练解耦,使得用户只需要通过配置工具和奖励函数即可开始训练,同时支持异步工具调用,将训练速度提高了2倍。当前版本原生支持一键 DeepSearch 训练,并具有多轮工具调用、模型判断奖励和多模型训练(包括 Qwen3)等功能。
2. 项目代码目录及介绍
以下是 RL-Factory 项目的代码目录结构及简要介绍:
assets/: 存储项目相关的资源文件。docker/: 包含 Docker 相关的配置和脚本。docs/: 文档目录,包含项目教程和使用说明。envs/: 环境配置文件和示例。examples/: 示例代码和训练脚本。generator/: 生成器相关的代码。patches/: 补丁文件,用于修改或增强现有代码。rag_server/: 与 rag_server 相关的代码。recipe/: 食谱文件,用于定义训练流程。scripts/: 脚本文件,用于执行特定的任务。tests/: 测试代码,用于验证项目的功能和性能。verl/: verl 相关的代码。webui/: WebUI 相关的代码,用于提供图形界面。workspace/: 工作空间目录,包含项目文件和工具。tools/: 工具目录,包含项目所依赖的第三方库。LICENSE: 项目许可证文件。README.md: 项目介绍和说明文件。install.sh: 安装脚本,用于自动化安装依赖。main_grpo.sh: 主训练脚本,用于启动训练流程。pyproject.toml: 项目配置文件。requirements.txt: 项目依赖文件。
3. 项目亮点功能拆解
RL-Factory 的亮点功能主要包括:
- 易于设计的奖励函数:通过规则、模型判断甚至是工具来计算奖励,满足不同场景下的奖励函数需求。
- 无缝工具设置:只需提供 MCP 工具的配置文件即可将其集成到强化学习中。
- 多代理扩展:将代理转换为 MCP 格式,方便进行多代理交互。
4. 项目主要技术亮点拆解
RL-Factory 的主要技术亮点包括:
- 高效的工具调用:通过批处理和异步并行工具调用来提高在线强化学习的效率。
- 高效的奖励计算:通过分布式部署 LRM(如 QwQ-32B)进行高效的模型判断,并使用异步并行计算来加速奖励计算。
5. 与同类项目对比的亮点
与同类项目相比,RL-Factory 的亮点如下:
- 训练效率:相比其他框架,RL-Factory 在相同计算资源下训练时间缩短约一半,显著提高了训练效率。
- 模型性能:使用 Qwen3 作为基模型,其性能优于 Qwen2.5,能够通过强化学习后训练实现领域特定的工具调用,而无需进行 SFT。
- 易用性:项目提供了 WebUI,使得数据处理、工具和环境定义、训练配置和项目管理更加直观和便捷。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492