pg_duckdb项目中的PostgreSQL JSONB与数组类型内存泄漏问题分析
问题背景
在pg_duckdb项目中,当扫描包含JSONB或数组类型的PostgreSQL表时,会出现内存持续增长的问题。这个问题源于PostgreSQL内部函数的内存管理机制与DuckDB的内存管理方式存在差异。
技术细节
PostgreSQL在处理JSONB和数组类型时,会使用palloc函数分配内存。这些函数包括:
JsonbToCString:用于将JSONB数据转换为字符串deconstruct_array:用于解析数组类型数据
这些函数分配的内存属于PostgreSQL的内存上下文(MemoryContext)系统,而pg_duckdb在执行查询时没有及时释放这些内存,导致内存泄漏。在PostgreSQL中,这些内存通常会在查询执行结束时由ExecutorState统一释放,但在pg_duckdb的场景下,这种延迟释放会导致内存持续增长。
问题复现
可以通过以下SQL语句复现这个问题:
-- JSONB类型内存泄漏
CREATE TABLE j1(c jsonb);
INSERT INTO j1 SELECT '{"large_key_name": 1}'::jsonb FROM generate_series(1, 10000000);
SELECT * FROM j1 ORDER BY 1 LIMIT 1;
-- 数组类型内存泄漏
CREATE TABLE a1(c text[]);
INSERT INTO a1 SELECT array['large_string_element'] FROM generate_series(1, 10000000);
SELECT * FROM a1 ORDER BY 1 LIMIT 1;
解决方案探讨
项目维护者提出了两种解决方案:
-
自定义实现方案:为pg_duckdb重新实现
JsonbToCString和deconstruct_array函数。这种方法虽然能彻底解决问题,但实现复杂度高,且可能引入兼容性问题。 -
内存上下文管理方案:在调用这些函数前切换到专用的内存上下文,然后定期重置该上下文来回收内存。这种方法更优雅,且与PostgreSQL的内存管理机制更契合。
经过讨论,项目团队决定采用第二种方案,因为它:
- 维护成本低
- 与现有PostgreSQL架构兼容
- 性能影响可控
实现优化
在具体实现上,开发者需要考虑以下优化点:
-
内存上下文创建时机:不应为每次转换创建新的内存上下文,这会导致性能下降。建议在查询开始时创建,查询结束时销毁。
-
内存回收策略:可以设置内存阈值(如8MB),当内存使用超过阈值时自动重置上下文,避免内存无限增长。
-
上下文层级关系:应将专用内存上下文作为当前内存上下文的子上下文,确保它能随查询结束自动释放,避免长期内存占用。
总结
pg_duckdb在处理PostgreSQL复杂数据类型时的内存泄漏问题,反映了不同数据库系统内存管理机制的差异。通过合理利用PostgreSQL的内存上下文系统,可以在保持兼容性的同时有效解决内存泄漏问题。这种解决方案不仅适用于JSONB和数组类型,也可为其他类似场景提供参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00