pg_duckdb项目中的PostgreSQL JSONB与数组类型内存泄漏问题分析
问题背景
在pg_duckdb项目中,当扫描包含JSONB或数组类型的PostgreSQL表时,会出现内存持续增长的问题。这个问题源于PostgreSQL内部函数的内存管理机制与DuckDB的内存管理方式存在差异。
技术细节
PostgreSQL在处理JSONB和数组类型时,会使用palloc函数分配内存。这些函数包括:
JsonbToCString:用于将JSONB数据转换为字符串deconstruct_array:用于解析数组类型数据
这些函数分配的内存属于PostgreSQL的内存上下文(MemoryContext)系统,而pg_duckdb在执行查询时没有及时释放这些内存,导致内存泄漏。在PostgreSQL中,这些内存通常会在查询执行结束时由ExecutorState统一释放,但在pg_duckdb的场景下,这种延迟释放会导致内存持续增长。
问题复现
可以通过以下SQL语句复现这个问题:
-- JSONB类型内存泄漏
CREATE TABLE j1(c jsonb);
INSERT INTO j1 SELECT '{"large_key_name": 1}'::jsonb FROM generate_series(1, 10000000);
SELECT * FROM j1 ORDER BY 1 LIMIT 1;
-- 数组类型内存泄漏
CREATE TABLE a1(c text[]);
INSERT INTO a1 SELECT array['large_string_element'] FROM generate_series(1, 10000000);
SELECT * FROM a1 ORDER BY 1 LIMIT 1;
解决方案探讨
项目维护者提出了两种解决方案:
-
自定义实现方案:为pg_duckdb重新实现
JsonbToCString和deconstruct_array函数。这种方法虽然能彻底解决问题,但实现复杂度高,且可能引入兼容性问题。 -
内存上下文管理方案:在调用这些函数前切换到专用的内存上下文,然后定期重置该上下文来回收内存。这种方法更优雅,且与PostgreSQL的内存管理机制更契合。
经过讨论,项目团队决定采用第二种方案,因为它:
- 维护成本低
- 与现有PostgreSQL架构兼容
- 性能影响可控
实现优化
在具体实现上,开发者需要考虑以下优化点:
-
内存上下文创建时机:不应为每次转换创建新的内存上下文,这会导致性能下降。建议在查询开始时创建,查询结束时销毁。
-
内存回收策略:可以设置内存阈值(如8MB),当内存使用超过阈值时自动重置上下文,避免内存无限增长。
-
上下文层级关系:应将专用内存上下文作为当前内存上下文的子上下文,确保它能随查询结束自动释放,避免长期内存占用。
总结
pg_duckdb在处理PostgreSQL复杂数据类型时的内存泄漏问题,反映了不同数据库系统内存管理机制的差异。通过合理利用PostgreSQL的内存上下文系统,可以在保持兼容性的同时有效解决内存泄漏问题。这种解决方案不仅适用于JSONB和数组类型,也可为其他类似场景提供参考。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00