pg_duckdb项目中的PostgreSQL JSONB与数组类型内存泄漏问题分析
问题背景
在pg_duckdb项目中,当扫描包含JSONB或数组类型的PostgreSQL表时,会出现内存持续增长的问题。这个问题源于PostgreSQL内部函数的内存管理机制与DuckDB的内存管理方式存在差异。
技术细节
PostgreSQL在处理JSONB和数组类型时,会使用palloc函数分配内存。这些函数包括:
JsonbToCString:用于将JSONB数据转换为字符串deconstruct_array:用于解析数组类型数据
这些函数分配的内存属于PostgreSQL的内存上下文(MemoryContext)系统,而pg_duckdb在执行查询时没有及时释放这些内存,导致内存泄漏。在PostgreSQL中,这些内存通常会在查询执行结束时由ExecutorState统一释放,但在pg_duckdb的场景下,这种延迟释放会导致内存持续增长。
问题复现
可以通过以下SQL语句复现这个问题:
-- JSONB类型内存泄漏
CREATE TABLE j1(c jsonb);
INSERT INTO j1 SELECT '{"large_key_name": 1}'::jsonb FROM generate_series(1, 10000000);
SELECT * FROM j1 ORDER BY 1 LIMIT 1;
-- 数组类型内存泄漏
CREATE TABLE a1(c text[]);
INSERT INTO a1 SELECT array['large_string_element'] FROM generate_series(1, 10000000);
SELECT * FROM a1 ORDER BY 1 LIMIT 1;
解决方案探讨
项目维护者提出了两种解决方案:
-
自定义实现方案:为pg_duckdb重新实现
JsonbToCString和deconstruct_array函数。这种方法虽然能彻底解决问题,但实现复杂度高,且可能引入兼容性问题。 -
内存上下文管理方案:在调用这些函数前切换到专用的内存上下文,然后定期重置该上下文来回收内存。这种方法更优雅,且与PostgreSQL的内存管理机制更契合。
经过讨论,项目团队决定采用第二种方案,因为它:
- 维护成本低
- 与现有PostgreSQL架构兼容
- 性能影响可控
实现优化
在具体实现上,开发者需要考虑以下优化点:
-
内存上下文创建时机:不应为每次转换创建新的内存上下文,这会导致性能下降。建议在查询开始时创建,查询结束时销毁。
-
内存回收策略:可以设置内存阈值(如8MB),当内存使用超过阈值时自动重置上下文,避免内存无限增长。
-
上下文层级关系:应将专用内存上下文作为当前内存上下文的子上下文,确保它能随查询结束自动释放,避免长期内存占用。
总结
pg_duckdb在处理PostgreSQL复杂数据类型时的内存泄漏问题,反映了不同数据库系统内存管理机制的差异。通过合理利用PostgreSQL的内存上下文系统,可以在保持兼容性的同时有效解决内存泄漏问题。这种解决方案不仅适用于JSONB和数组类型,也可为其他类似场景提供参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00