pg_duckdb项目中的PostgreSQL JSONB与数组类型内存泄漏问题分析
问题背景
在pg_duckdb项目中,当扫描包含JSONB或数组类型的PostgreSQL表时,会出现内存持续增长的问题。这个问题源于PostgreSQL内部函数的内存管理机制与DuckDB的内存管理方式存在差异。
技术细节
PostgreSQL在处理JSONB和数组类型时,会使用palloc
函数分配内存。这些函数包括:
JsonbToCString
:用于将JSONB数据转换为字符串deconstruct_array
:用于解析数组类型数据
这些函数分配的内存属于PostgreSQL的内存上下文(MemoryContext)系统,而pg_duckdb在执行查询时没有及时释放这些内存,导致内存泄漏。在PostgreSQL中,这些内存通常会在查询执行结束时由ExecutorState统一释放,但在pg_duckdb的场景下,这种延迟释放会导致内存持续增长。
问题复现
可以通过以下SQL语句复现这个问题:
-- JSONB类型内存泄漏
CREATE TABLE j1(c jsonb);
INSERT INTO j1 SELECT '{"large_key_name": 1}'::jsonb FROM generate_series(1, 10000000);
SELECT * FROM j1 ORDER BY 1 LIMIT 1;
-- 数组类型内存泄漏
CREATE TABLE a1(c text[]);
INSERT INTO a1 SELECT array['large_string_element'] FROM generate_series(1, 10000000);
SELECT * FROM a1 ORDER BY 1 LIMIT 1;
解决方案探讨
项目维护者提出了两种解决方案:
-
自定义实现方案:为pg_duckdb重新实现
JsonbToCString
和deconstruct_array
函数。这种方法虽然能彻底解决问题,但实现复杂度高,且可能引入兼容性问题。 -
内存上下文管理方案:在调用这些函数前切换到专用的内存上下文,然后定期重置该上下文来回收内存。这种方法更优雅,且与PostgreSQL的内存管理机制更契合。
经过讨论,项目团队决定采用第二种方案,因为它:
- 维护成本低
- 与现有PostgreSQL架构兼容
- 性能影响可控
实现优化
在具体实现上,开发者需要考虑以下优化点:
-
内存上下文创建时机:不应为每次转换创建新的内存上下文,这会导致性能下降。建议在查询开始时创建,查询结束时销毁。
-
内存回收策略:可以设置内存阈值(如8MB),当内存使用超过阈值时自动重置上下文,避免内存无限增长。
-
上下文层级关系:应将专用内存上下文作为当前内存上下文的子上下文,确保它能随查询结束自动释放,避免长期内存占用。
总结
pg_duckdb在处理PostgreSQL复杂数据类型时的内存泄漏问题,反映了不同数据库系统内存管理机制的差异。通过合理利用PostgreSQL的内存上下文系统,可以在保持兼容性的同时有效解决内存泄漏问题。这种解决方案不仅适用于JSONB和数组类型,也可为其他类似场景提供参考。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









