Juggernaut 技术文档
1. 安装指南
安装 Node.js
使用 Homebrew 包管理系统的用户,可以使用以下命令安装 Node.js:
brew install node
或者按照 Node.js 构建指南 进行安装。
安装 Redis
如果使用 Homebrew 包管理系统,可以使用以下命令安装 Redis:
brew install redis
或者按照 Redis 构建指南 进行安装。
安装 Juggernaut
Juggernaut 通过 npm 分发。如果尚未安装 npm,需要先安装。
npm install -g juggernaut
安装 Juggernaut 客户端宝石(可选)
如果计划将 Juggernaut 与 Ruby 一起使用,则需要安装宝石。
gem install juggernaut
2. 项目使用说明
Juggernaut 允许服务器和客户端浏览器之间实现实时连接。您可以使用 Web 应用程序将数据推送到客户端,实现多人游戏、聊天、团队协作等功能。
在开始使用之前,需要确保已安装 Node.js、Redis 和 Ruby(可选)。
运行 Juggernaut
启动 Redis:
redis-server
启动 Juggernaut:
juggernaut
启动后,访问 http://localhost:8080 查看效果。
基本使用
Juggernaut 的所有操作都在频道上下文中完成。JavaScript 客户端可以订阅频道,服务器可以向频道发布消息。
首先,在 HTML 中引入 Juggernaut 的 application.js 文件:
<script src="http://localhost:8080/application.js" type="text/javascript" charset="utf-8"></script>
然后创建 Juggernaut 实例并订阅频道:
<script type="text/javascript" charset="utf-8">
var jug = new Juggernaut;
jug.subscribe("channel1", function(data){
console.log("收到数据:" + data);
});
</script>
在服务器端,使用 Ruby 发布消息到频道:
require "juggernaut"
Juggernaut.publish("channel1", "一些数据")
您应该在打开的浏览器窗口中看到接收到的数据。
3. 项目 API 使用文档
Juggernaut API 主要包括两个方法:publish 和 subscribe。
publish:用于服务器端向频道发送消息。subscribe:用于客户端订阅特定频道。
从 Python 使用 Juggernaut
不需要使用 Ruby 与 Juggernaut 通信。以下是使用 Python 和 redis-py 库的示例:
import redis
import json
msg = {
"channels": ["channel1"],
"data": "foo"
}
r = redis.Redis()
r.publish("juggernaut", json.dumps(msg))
从 Node.js 使用 Juggernaut
与 Python 示例类似,可以使用 Node.js 的 Redis 适配器:
var redis = require("redis");
var msg = {
"channels": ["channel1"],
"data": "foo"
};
var client = redis.createClient();
client.publish("juggernaut", JSON.stringify(msg));
4. 项目安装方式
请参考上述“安装指南”部分。
以上就是关于 Juggernaut 项目的详细技术文档。按照以上指南,您可以顺利安装并使用 Juggernaut 实现实时数据通信功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00