Otter缓存库实现多键值查询的工程实践
2025-07-07 07:13:03作者:贡沫苏Truman
在分布式系统开发中,缓存作为性能优化的关键组件,其查询效率直接影响系统响应速度。传统缓存方案通常采用单一键值映射,但在实际业务场景中,我们经常需要支持多维度查询能力。本文将基于开源缓存库Otter,探讨如何优雅实现多键值映射的缓存方案。
业务场景分析
考虑电商平台的用户数据管理场景,通常存在三种标识符:
- 系统内部生成的自增ID(InternalID)
- 对外暴露的客户编号(FacingID)
- 用户自定义的用户名(ChosenID)
理想情况下,我们希望通过任意一种标识符都能快速获取完整的用户数据,这就要求缓存层支持多键值映射能力。
核心实现方案
Otter作为高性能并发缓存库,虽然原生不支持多键映射,但通过组合使用其特性,我们可以构建出高效的多键查询方案:
双层缓存架构
// 第一层:辅助键映射表(Key -> InternalID)
keys := otter.Must(&otter.Options[int64, int64]{})
// 第二层:主数据缓存(InternalID -> Customer对象)
cache := otter.Must(&otter.Options[int64, *Customer]{
OnAtomicDeletion: func(e otter.DeletionEvent[int64, *Customer]) {
keys.Invalidate(e.Value.FacingID)
keys.Invalidate(e.Value.ChosenID)
},
})
数据写入流程
- 将完整用户对象存入主缓存
- 建立辅助键到主键的映射关系
cache.Compute(customer.InternalID, func(oldValue *Customer, found bool) (*Customer, otter.ComputeOp) {
if found {
return oldValue, otter.CancelOp
}
keys.SetIfAbsent(customer.FacingID, customer.InternalID)
keys.SetIfAbsent(customer.ChosenID, customer.InternalID)
return customer, otter.WriteOp
})
数据查询流程
- 通过辅助键获取主键
- 通过主键获取完整数据
func GetByFacingID(facingID int64) (*Customer, error) {
key, ok := keys.GetIfPresent(facingID)
if !ok {
return nil, ErrNotFound
}
return cache.GetIfPresent(key)
}
关键技术点
- 原子性保证:使用Compute方法确保主缓存和辅助键映射的原子更新
- 自动清理:通过OnAtomicDeletion回调实现关联键的自动失效
- 性能优化:Otter底层采用高效哈希表,查询延迟仅3-4纳秒
- 内存控制:辅助键缓存仅存储必要映射关系,不参与淘汰策略
方案优势
- 解耦设计:保持核心缓存简洁性的同时扩展多键支持
- 一致性保证:通过原子操作和自动清理机制维护数据一致性
- 高性能:双层查询仍保持微秒级响应
- 灵活性:可自由扩展更多维度的查询键
适用场景建议
该方案特别适合以下场景:
- 需要支持多种业务标识符查询
- 主键与辅助键存在固定映射关系
- 对查询性能有较高要求
- 需要保证缓存一致性
对于更复杂的多键查询需求,可以考虑在业务层构建索引结构,但本方案在大多数情况下都能提供简单高效的解决方案。
总结
通过合理组合Otter提供的原子操作和事件回调机制,我们成功构建了支持多键查询的高效缓存方案。这种实现方式既保持了Otter原有的性能优势,又扩展了业务所需的查询灵活性,是工程实践中值得借鉴的设计模式。开发者可以根据实际业务需求,调整辅助键的数量和管理策略,构建最适合自身业务的缓存体系。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868