Storybook项目中composeStories在Next.js服务端渲染的问题解析
问题背景
在Storybook项目的实际应用中,开发者经常会使用composeStories函数来组合和重用故事组件。然而,当这些组件在Next.js框架中进行服务端渲染(SSR)时,会出现无法预期的错误。
问题现象
开发者在使用composeStories函数时,虽然客户端渲染的组件能够正常显示,但在服务端渲染过程中会抛出"TypeError: Cannot read properties of null (reading '0')"的错误。这个错误出现在webpack运行时环境中,表明在服务端渲染过程中某些依赖项无法正确加载。
根本原因
经过技术分析,发现问题的根源在于composeStories函数内部依赖了react-dom/test-utils模块。这个模块在服务端渲染环境中不可用,因为它主要设计用于客户端测试场景。具体来说,Storybook的act-compat.ts文件中直接引用了这个测试工具模块,导致在SSR环境下执行失败。
解决方案
目前推荐的临时解决方案是使用Next.js的动态导入功能,并显式禁用服务端渲染选项:
const Variants = dynamic(() => import("@storybook/react")
.then(({ composeStories }) => composeStories(stories).Variants), {
ssr: false, // 禁用服务端渲染
});
这种方法通过动态导入组件并设置ssr:false选项,确保组件只在客户端渲染,从而避免了服务端渲染时的依赖问题。
技术深入
-
服务端渲染限制:在Node.js环境中,许多浏览器特有的API和模块不可用,react-dom/test-utils就是其中之一。
-
动态导入优势:Next.js的动态导入功能允许代码分割和按需加载,特别适合处理这种环境依赖差异的情况。
-
兼容性考虑:Storybook团队正在考虑长期解决方案,可能包括:
- 提供SSR友好的替代实现
- 重构act-compat模块以减少环境依赖
- 提供明确的错误提示和文档指导
最佳实践建议
-
对于需要在服务端渲染的Storybook组件,考虑提取核心逻辑到独立组件,避免直接使用composeStories。
-
在Next.js项目中,合理规划哪些组件需要SSR,哪些可以仅客户端渲染。
-
关注Storybook的更新日志,未来版本可能会原生支持SSR场景。
总结
这个问题展示了前端开发中环境差异带来的挑战,特别是在同构应用(SSR+CSR)开发中。通过理解底层原理和合理使用框架特性,开发者可以找到有效的解决方案。虽然目前需要采用临时方案,但这个问题也促使社区思考如何更好地支持各种渲染场景。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00