Langfuse项目中的OpenTelemetry追踪数据映射问题解析
在Langfuse项目中,用户报告了一个关于OpenTelemetry(OTel)追踪数据映射的重要问题。当通过Traceloop OpenLLMetry或OpenLIT等工具向otel/v1/traces端点发送追踪数据时,追踪记录中缺少名称和输入/输出信息,这显著降低了数据的可搜索性和实用性。
问题背景
OpenTelemetry作为一种开放标准的观测性框架,被广泛应用于分布式系统的监控和追踪。Langfuse作为一个专注于LLM应用的分析平台,提供了对OTel数据的支持。然而,在实际使用中发现,通过标准OTel工具发送的追踪数据在Langfuse界面上显示不完整。
技术分析
问题的核心在于OTel数据到Langfuse内部数据模型的映射机制。Langfuse使用convertOtelSpanToIngestionEvent函数将OTel的Span转换为内部事件格式。这个转换过程需要从Span中提取特定的属性:
- 追踪名称:通常从Span的
name属性提取 - 输入/输出数据:查找特定属性如
gen_ai.content.prompt、gen_ai.content.completion或input.value、output.value
当这些属性不存在或采用不同的命名约定时,就会导致数据在界面上显示为null。特别是对于OpenLLMetry和OpenLIT这类工具,它们可能使用与Langfuse预期不同的语义约定。
解决方案
Langfuse团队已经通过PR #5449解决了这个问题。该解决方案主要包含以下改进:
- 根Span名称映射:将根Span的名称映射到追踪记录的名称字段
- 输入输出提取:从根Span中提取输入和输出数据并映射到追踪记录
- 兼容性增强:支持OpenLLMetry、OpenLIT和Openinference等多种风格的追踪数据
这种改进使得即使是最简单的LLM生成操作,也能在Langfuse界面上正确显示基本追踪信息,显著提升了用户体验。
技术意义
这一改进对于使用Langfuse分析LLM应用性能的开发者具有重要意义:
- 数据完整性:确保OTel追踪数据的关键信息不会丢失
- 统一视图:无论使用原生SDK还是OTel集成,都能获得一致的追踪视图
- 降低使用门槛:开发者无需额外配置即可获得完整的追踪信息
结论
Langfuse对OTel数据映射的改进体现了其对开发者体验的重视。通过更好地支持标准OTel工具,Langfuse进一步巩固了其作为LLM应用分析平台的地位。这一改进将随下一个版本发布,届时所有用户都能受益于更完整、更易用的追踪数据分析体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00