Langfuse项目中的OpenTelemetry追踪数据映射问题解析
在Langfuse项目中,用户报告了一个关于OpenTelemetry(OTel)追踪数据映射的重要问题。当通过Traceloop OpenLLMetry或OpenLIT等工具向otel/v1/traces端点发送追踪数据时,追踪记录中缺少名称和输入/输出信息,这显著降低了数据的可搜索性和实用性。
问题背景
OpenTelemetry作为一种开放标准的观测性框架,被广泛应用于分布式系统的监控和追踪。Langfuse作为一个专注于LLM应用的分析平台,提供了对OTel数据的支持。然而,在实际使用中发现,通过标准OTel工具发送的追踪数据在Langfuse界面上显示不完整。
技术分析
问题的核心在于OTel数据到Langfuse内部数据模型的映射机制。Langfuse使用convertOtelSpanToIngestionEvent函数将OTel的Span转换为内部事件格式。这个转换过程需要从Span中提取特定的属性:
- 追踪名称:通常从Span的
name属性提取 - 输入/输出数据:查找特定属性如
gen_ai.content.prompt、gen_ai.content.completion或input.value、output.value
当这些属性不存在或采用不同的命名约定时,就会导致数据在界面上显示为null。特别是对于OpenLLMetry和OpenLIT这类工具,它们可能使用与Langfuse预期不同的语义约定。
解决方案
Langfuse团队已经通过PR #5449解决了这个问题。该解决方案主要包含以下改进:
- 根Span名称映射:将根Span的名称映射到追踪记录的名称字段
- 输入输出提取:从根Span中提取输入和输出数据并映射到追踪记录
- 兼容性增强:支持OpenLLMetry、OpenLIT和Openinference等多种风格的追踪数据
这种改进使得即使是最简单的LLM生成操作,也能在Langfuse界面上正确显示基本追踪信息,显著提升了用户体验。
技术意义
这一改进对于使用Langfuse分析LLM应用性能的开发者具有重要意义:
- 数据完整性:确保OTel追踪数据的关键信息不会丢失
- 统一视图:无论使用原生SDK还是OTel集成,都能获得一致的追踪视图
- 降低使用门槛:开发者无需额外配置即可获得完整的追踪信息
结论
Langfuse对OTel数据映射的改进体现了其对开发者体验的重视。通过更好地支持标准OTel工具,Langfuse进一步巩固了其作为LLM应用分析平台的地位。这一改进将随下一个版本发布,届时所有用户都能受益于更完整、更易用的追踪数据分析体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00