Microsoft Authentication Library for JS 中的 knownAuthorities 配置解析
什么是 knownAuthorities
在 Microsoft Authentication Library for JS (MSAL.js) 配置中,knownAuthorities 是一个用于指定已知身份验证机构列表的属性。这个属性主要用于定义应用程序信任的身份提供者(Identity Providers)。
适用场景
knownAuthorities 主要设计用于以下两种场景:
-
Azure AD B2C 应用:当应用程序使用 Azure AD B2C 作为身份提供者时,需要明确指定信任的 B2C 策略域。
-
非标准 Microsoft 身份提供者:当应用程序集成了非标准的 Microsoft 身份提供者服务时,需要在此列出这些自定义的授权机构。
重要注意事项
对于标准的 Azure Active Directory (Azure AD) 应用,不应该将 login.microsoftonline.com 或其他 Azure AD 别名添加到 knownAuthorities 中,原因如下:
-
自动发现机制:MSAL.js 默认已经内置了对标准 Azure AD 授权机构的发现机制,无需额外配置。
-
多租户应用限制:如果开发者希望限制应用只能被特定租户访问,不应该依赖客户端配置来实现。因为客户端验证很容易被绕过,这不是一种安全的做法。
最佳实践
对于需要限制访问权限的多租户应用,建议采用以下方法:
-
使用条件访问策略:在 Azure AD 中配置条件访问(Conditional Access)策略,这是服务端的安全控制方式。
-
令牌验证:在应用后端验证令牌中的
tid(租户ID)声明,确保请求来自允许的租户。 -
API 权限控制:在 API 层面实施租户级别的访问控制,而非在前端实现。
配置示例
虽然不推荐对标准 Azure AD 使用 knownAuthorities,但对于 B2C 场景,配置示例如下:
{
auth: {
clientId: "你的客户端ID",
authority: "https://yourtenant.b2clogin.com/yourtenant.onmicrosoft.com/B2C_1_signupsignin",
knownAuthorities: ["yourtenant.b2clogin.com"]
}
}
总结
理解 knownAuthorities 的正确使用场景对于构建安全的身份验证流程至关重要。开发者应当避免将其用于标准 Azure AD 场景,而应该采用服务端的安全控制机制来实现租户访问限制。对于 B2C 或自定义身份提供者场景,才需要合理配置此属性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01