HELM项目中RAFT评估方法的技术解析
2025-07-03 00:44:55作者:虞亚竹Luna
在自然语言处理领域,评估大型语言模型(LLM)的性能是一个关键环节。斯坦福CRFM团队开发的HELM项目提供了一套全面的评估框架,其中对RAFT基准的评估方法值得深入探讨。
评估数据集构建
HELM项目在RAFT评估中采用了50个公开标注样本的巧妙划分方案。技术团队将这些样本分为两部分:
- 10个样本作为上下文学习示例(in-context learning examples)
- 40个样本作为实际评估用例
这种划分比例(1:4)既保证了模型有足够的示范样本学习任务要求,又提供了充足的测试数据来验证模型性能。值得注意的是,评估过程中会进行多轮测试(3次不同试验),每次使用不同的上下文学习样本组合,以增强结果的可靠性。
数据增强技术
为提高评估的鲁棒性,HELM团队在每次试验中还应用了多种数据增强技术:
- 方言扰动(dialect perturbations):模拟不同地区的语言变体
- 其他文本变换方法
这种多维度测试方法能够更全面地评估模型在实际应用场景中的表现,而非仅仅测试模型在理想数据上的性能。
概率生成方法对比
与原始RAFT论文采用的基于token概率的方法不同,HELM项目采用了更直接的提示工程方法:
原始RAFT方法特点:
- 使用GPT-3的davinci引擎
- 获取前100个最可能的下一个token
- 对类别首token概率进行归一化处理
- 对B77数据集添加数字前缀解决标签冲突
HELM项目创新方法:
- 直接生成完整标签名称
- 通过精心设计的提示模板引导模型输出
- 结合任务说明和上下文学习示例
- 更接近实际应用场景的评估方式
提示工程实践
HELM项目中的典型提示结构包含以下要素:
- 任务描述:明确标注要求和标准
- 类别定义:详细说明每个标签的含义
- 示例样本:提供多个标注示范
- 待标注样本:最后放置需要模型处理的输入
这种结构化的提示设计既保证了评估的规范性,又能充分考察模型的上下文学习能力。从技术角度看,这种方法比单纯依赖token概率更能反映模型在实际应用中的表现。
技术价值与启示
HELM项目的RAFT评估方法体现了几个重要技术理念:
- 评估应尽可能模拟真实应用场景
- 数据划分和增强对可靠评估至关重要
- 提示工程是评估大型语言模型的关键技术
- 多轮测试可以提高结果的可信度
这些方法论不仅适用于RAFT基准评估,对于其他NLP任务的评估体系设计也具有参考价值。特别是在评估大型语言模型时,如何设计既严格又贴近实际使用的评估方案,HELM项目提供了很好的实践范例。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287