LitmusChaos中Pod-CPU-Hog实验超时问题分析与解决
问题背景
在使用LitmusChaos进行Pod-CPU-Hog混沌实验时,实验虽然显示为"Pass"状态,但实际上并未产生预期的CPU负载效果。通过分析实验日志发现,helper pod在执行过程中出现了超时错误,导致实验未能按预期工作。
问题现象
实验执行流程正常经历了runner -> experience pod -> helper pod的部署顺序,但在helper pod的日志中可以看到以下关键错误信息:
time="2024-01-23T06:48:12Z" level=info msg="[Info]: starting process: pause nsutil -t 1572728 -p -- stress-ng --timeout 30s --cpu 1"
...
time="2024-01-23T06:49:15Z" level=fatal msg="helper pod failed, err: the stress process is timeout after 60s"
虽然实验结果显示为"Pass",但实际并未产生CPU负载效果。相比之下,Pod-CPU-Hog-Exec实验能够正常工作。
技术分析
-
超时机制问题:从日志可以看出,stress-ng命令设置了30秒的超时(--timeout 30s),但helper pod在60秒后报告超时。这表明实验中的超时机制可能存在不一致性。
-
进程命名空间隔离问题:helper pod使用了nsutil工具尝试在目标容器的进程命名空间中运行stress-ng,这种跨命名空间的操作在特定环境下可能出现问题。
-
版本兼容性问题:用户使用的是Litmus 1.13.8版本,该版本可能在此类实验的实现上存在已知问题。
-
结果验证机制:实验结果显示为"Pass"但实际上未产生效果,说明结果验证机制可能存在缺陷,未能正确检测实验的实际效果。
解决方案
-
升级Litmus版本:建议升级到最新版本(2.x或3.x),新版本已经修复了此类问题。新版本在以下方面有所改进:
- 改进了超时处理机制
- 优化了跨命名空间操作
- 增强了结果验证机制
-
替代方案:如果暂时无法升级,可以考虑使用Pod-CPU-Hog-Exec实验作为替代,该实验采用不同的实现方式,在当前版本中表现稳定。
-
参数调整:可以尝试调整实验参数,如:
- 增加超时时间
- 调整CPU核心数设置
- 修改stress-ng命令参数
最佳实践建议
-
在生产环境使用前,先在测试环境充分验证实验效果。
-
定期更新Litmus版本,以获取最新的修复和改进。
-
对于关键业务场景,建议同时使用多种监控手段验证混沌实验的实际效果,而不仅依赖实验报告。
-
详细记录实验参数和环境配置,便于问题排查和复现。
通过以上分析和建议,用户可以更好地理解并解决Pod-CPU-Hog实验中的超时问题,确保混沌实验能够按预期执行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00