ClearML项目中Pipeline执行阻塞问题的分析与解决方案
2025-06-05 10:02:59作者:沈韬淼Beryl
问题背景
在使用ClearML开源机器学习平台时,用户遇到了一个典型的Pipeline执行问题:当尝试运行pipeline_from_tasks.py示例时,如果注释掉pipe.start_locally()这行代码,Pipeline会上传到ClearML服务器但会在第一步执行后停滞不前。而取消注释后,Pipeline则能正常运行完成所有步骤。
技术分析
这个现象背后揭示了ClearML Pipeline执行机制的一个重要特性:Pipeline控制器和Pipeline步骤需要不同的执行队列和代理(agent)来避免执行阻塞。
执行阻塞的根本原因
- 单代理执行模式:当使用单个ClearML Agent监听默认队列时,该Agent会按顺序执行队列中的任务
- Pipeline控制器依赖:Pipeline控制器需要等待所有步骤完成后才能结束,而步骤又需要等待控制器释放资源
- 死锁形成:这种相互依赖关系导致了执行死锁,表现为Pipeline在第一步后停滞
ClearML Pipeline架构设计
ClearML Pipeline的设计采用了分层执行架构:
- 控制器层:负责Pipeline的整体协调和状态管理
- 步骤执行层:负责具体任务步骤的执行
- 服务队列:专门设计用于运行Pipeline控制器的特殊队列
解决方案
针对这一问题,ClearML提供了明确的解决方案:
-
分离执行队列:
- 为Pipeline控制器使用"services"队列
- 为Pipeline步骤使用"default"或其他自定义队列
-
多代理部署:
- 部署一个服务模式Agent监听"services"队列
- 部署常规Agent监听步骤执行队列
-
配置调整:
- 明确指定Pipeline控制器的执行队列
- 确保步骤任务的队列与控制器不同
最佳实践建议
-
生产环境部署:
- 控制器队列建议使用轻量级机器
- 步骤队列根据任务需求配置相应规格的机器
-
资源规划:
- 控制器不需要GPU资源
- 计算密集型步骤应配置GPU资源
-
调试技巧:
- 开发阶段可使用start_locally()本地调试
- 生产环境务必分离控制器和步骤队列
总结
ClearML Pipeline的这种设计实际上体现了其强大的分布式执行能力。通过分离控制器和执行步骤,系统能够实现:
- 更好的资源利用率
- 更高的并行度
- 更灵活的资源调度
理解这一设计原理后,用户可以更有效地规划和部署ClearML Pipeline,充分发挥其在复杂机器学习工作流管理方面的优势。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322