Granian项目内存泄漏问题分析与解决方案
2025-06-24 21:08:48作者:戚魁泉Nursing
问题背景
Granian是一个高性能的Python Web服务器实现,支持ASGI、RSGI和WSGI协议。在近期版本更新中,用户报告了从Uvicorn迁移到Granian后出现内存使用量持续增长的问题。这个问题在多个使用FastAPI、Pydantic和SQLAlchemy的服务中被观察到,表现为内存使用量随时间推移而不断增加,而CPU和请求量保持相对稳定。
问题现象
通过监控数据可以观察到以下典型现象:
-
服务1在7天内的监控显示:
- CPU使用率基本保持稳定
- 请求量保持稳定
- 内存使用量从约200MB增长到超过600MB
-
服务2在2天内的监控显示:
- CPU使用率略有下降
- 请求量保持稳定
- 内存使用量从约150MB增长到超过300MB
技术分析过程
开发团队使用memray内存分析工具对问题进行了深入研究,发现了几个关键点:
-
版本差异分析:
- 1.2.2版本使用mimalloc内存分配器,显示内存占用较高
- 1.2.3版本改用jemalloc内存分配器,内存占用有所改善
- 但实际运行中RES内存仍持续增长
-
内存分配热点分析:
- Pydantic模型初始化占用了大量内存(1.344GB)
- SQLAlchemy缓存键生成相关操作也消耗了大量内存
- HMAC相关操作频繁分配内存
-
根本原因定位:
- Python对象在请求间未被正确释放
- 内存分配器保留的内存未被及时回收
- 特别是在处理大量请求时,内存碎片化问题加剧
解决方案
开发团队通过以下措施解决了内存泄漏问题:
-
内存分配器优化:
- 从mimalloc切换到jemalloc,减少了基础内存占用
- 优化了内存分配策略,减少碎片化
-
对象生命周期管理:
- 改进了请求处理后的资源清理机制
- 确保Python对象能够被垃圾回收器正确回收
-
关键代码修复:
- 修复了可能导致内存泄漏的特定代码路径
- 优化了高频率操作的实现方式
验证结果
通过内存分析工具和实际负载测试验证了修复效果:
-
使用mprof工具进行内存分析:
- 1.2.3版本在5分钟负载测试后内存持续增长
- 修复后的1.3.1版本内存使用保持稳定
- 内存曲线与Uvicorn表现相当
-
实际生产环境验证:
- 内存增长问题得到明显改善
- 服务稳定性提升
- 资源使用效率提高
技术启示
这个案例提供了几个重要的技术启示:
- 内存分配器选择对Python应用性能有显著影响
- 高并发场景下需要特别注意对象生命周期管理
- 全面的内存分析工具对于诊断复杂问题至关重要
- 持续的性能监控能够帮助及早发现问题
结论
Granian项目通过深入分析和针对性优化,成功解决了内存泄漏问题。这个案例展示了开源社区协作解决复杂技术问题的典型过程,也为其他Python Web服务器实现提供了有价值的参考。对于面临类似问题的开发者,建议采用系统化的分析方法,结合专业工具进行诊断和验证。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217