Terraform Provider Azurerm 中为 AKS Windows 节点启用 Azure Hybrid Benefit 的配置指南
在 Azure Kubernetes Service (AKS) 中使用 Windows 节点时,通过 Azure Hybrid Benefit 可以显著降低运营成本。本文将详细介绍如何在 Terraform Provider Azurerm 中正确配置这一功能。
Azure Hybrid Benefit 简介
Azure Hybrid Benefit 是微软提供的一项许可优化方案,允许客户将现有的 Windows Server 许可证应用于 Azure 虚拟机,从而节省高达 40% 的计算成本。对于运行 Windows 容器的 AKS 集群,这一优势同样适用。
Terraform 配置要点
在 Azurerm Provider 中,Azure Hybrid Benefit 的启用需要在 Kubernetes 集群资源级别进行配置,而不是在单独的节点池资源中。这是许多用户容易混淆的地方。
正确的配置方式是在 azurerm_kubernetes_cluster 资源的 windows_profile 块中设置 license 参数:
resource "azurerm_kubernetes_cluster" "example" {
# 其他必要参数...
windows_profile {
license = "Windows_Server"
}
}
重要注意事项
-
节点替换影响:在现有集群上启用此功能时,Azure 会替换所有现有的 Windows 节点。这意味着会有一个短暂的停机时间,建议在维护窗口期进行此操作。
-
版本兼容性:此功能从 Azurerm Provider 的较早版本(如 v4.17.0)就已支持,但在生产环境中建议使用较新的稳定版本以获得最佳兼容性和安全性。
-
许可验证:启用此功能前,请确保您拥有有效的 Windows Server 许可证,并且符合微软的许可条款要求。
配置最佳实践
对于生产环境,建议采用以下配置模式:
resource "azurerm_kubernetes_cluster" "production" {
name = "prod-aks-cluster"
location = "eastus"
resource_group_name = azurerm_resource_group.aks.name
dns_prefix = "prodaks"
default_node_pool {
name = "linuxpool"
node_count = 3
vm_size = "Standard_D2s_v3"
}
windows_profile {
admin_username = "azureuser"
admin_password = "ComplexPassword123!"
license = "Windows_Server"
}
network_profile {
network_plugin = "azure"
}
identity {
type = "SystemAssigned"
}
}
resource "azurerm_kubernetes_cluster_node_pool" "windows" {
name = "winpool"
kubernetes_cluster_id = azurerm_kubernetes_cluster.production.id
vm_size = "Standard_D4s_v3"
node_count = 2
os_type = "Windows"
}
通过以上配置,您可以在 AKS 集群中同时运行 Linux 和 Windows 节点,并为 Windows 节点充分利用 Azure Hybrid Benefit 带来的成本优势。
总结
在 Terraform 中为 AKS Windows 节点配置 Azure Hybrid Benefit 是一个简单但需要谨慎操作的过程。关键在于理解配置的正确位置(集群级别而非节点池级别)以及变更可能带来的影响。合理利用这一功能可以为企业节省大量云资源成本,特别是在大规模部署 Windows 容器的场景下。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00