Devtron 项目教程:构建企业级 Kubernetes 应用交付平台
2026-01-16 10:22:19作者:卓炯娓
引言:为什么选择 Devtron?
你是否还在为 Kubernetes 应用的复杂部署流程而头疼?是否在寻找一个能够统一管理 CI/CD、安全扫描、监控告警的完整解决方案?Devtron 正是这样一个革命性的开源工具集成平台,专为 Kubernetes 环境设计,让应用交付变得前所未有的简单高效。
通过本教程,你将掌握:
- ✅ Devtron 的核心架构和核心功能
- ✅ 快速安装和配置 Devtron 平台
- ✅ 创建完整的 CI/CD 流水线
- ✅ 集成安全扫描和监控告警
- ✅ 多集群管理和 GitOps 实践
- ✅ 企业级安全策略和权限控制
1. Devtron 架构解析
1.1 核心组件架构
graph TB
A[Devtron Dashboard] --> B[CI/CD Pipeline]
A --> C[Security Scanning]
A --> D[Monitoring & Alerting]
A --> E[GitOps Integration]
B --> F[Build System]
B --> G[Deployment Engine]
C --> H[Trivy Scanner]
C --> I[Clair Scanner]
D --> J[Grafana Dashboards]
D --> K[Prometheus Metrics]
E --> L[ArgoCD Integration]
E --> M[FluxCD Integration]
subgraph "Kubernetes Cluster"
F
G
H
I
J
K
L
M
end
1.2 技术栈组成
| 组件类型 | 技术实现 | 功能描述 |
|---|---|---|
| 前端界面 | React + TypeScript | 现代化用户交互界面 |
| 后端服务 | Go + Gin Framework | 高性能 API 服务 |
| 数据存储 | PostgreSQL | 元数据和配置存储 |
| CI/CD引擎 | Custom + ArgoCD | 流水线执行和部署 |
| 安全扫描 | Trivy + Clair | 镜像漏洞扫描 |
| 监控告警 | Grafana + Prometheus | 应用监控和告警 |
2. 环境准备和安装部署
2.1 系统要求
在开始安装前,请确保满足以下要求:
- Kubernetes 集群(版本 1.16+)
- Helm 3.x 版本
- 至少 4 CPU 核心和 8GB 内存
- 20GB 可用存储空间
2.2 快速安装步骤
步骤 1:添加 Helm 仓库
# 添加 Devtron Helm 仓库
helm repo add devtron https://helm.devtron.ai
# 更新仓库信息
helm repo update devtron
步骤 2:基础安装(仅 Dashboard)
# 安装基础版 Devtron Dashboard
helm install devtron devtron/devtron-operator \
--create-namespace \
--namespace devtroncd
步骤 3:完整平台安装(推荐)
# 安装完整 Devtron 平台(包含 CI/CD、安全、监控)
helm install devtron devtron/devtron-operator \
--namespace devtroncd \
--set installer.modules={cicd} \
--set argo-cd.enabled=true \
--set security.enabled=true \
--set notifier.enabled=true \
--set security.trivy.enabled=true \
--set monitoring.grafana.enabled=true
2.3 访问配置
安装完成后,获取访问信息:
# 获取 Dashboard URL
kubectl get svc -n devtroncd devtron-service \
-o jsonpath='{.status.loadBalancer.ingress[0].hostname}'
# 获取管理员密码(v0.6.0+)
kubectl -n devtroncd get secret devtron-secret \
-o jsonpath='{.data.ADMIN_PASSWORD}' | base64 -d
默认登录信息:
- 用户名:
admin - 密码:通过上述命令获取
3. 核心功能实战教程
3.1 创建第一个应用
应用创建流程
flowchart TD
A[开始创建应用] --> B[填写应用基本信息]
B --> C[配置 Git 仓库]
C --> D[选择部署策略]
D --> E[配置环境变量]
E --> F[设置资源限制]
F --> G[完成创建]
G --> H[触发首次部署]
详细配置示例
# devtron-app-config.yaml
apiVersion: devtron.ai/v1beta1
kind: Application
metadata:
name: sample-webapp
namespace: production
spec:
gitRepo:
url: https://gitcode.com/your-org/webapp.git
branch: main
path: k8s/manifests
deploymentStrategy:
type: RollingUpdate
maxSurge: 25%
maxUnavailable: 25%
resources:
requests:
cpu: "250m"
memory: "512Mi"
limits:
cpu: "500m"
memory: "1Gi"
environment:
- name: NODE_ENV
value: production
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: db-credentials
key: connection-string
3.2 CI/CD 流水线配置
流水线阶段定义
sequenceDiagram
participant Developer
participant Git as Git Repository
participant CI as CI Server
participant Registry as Container Registry
participant CD as CD Controller
participant K8s as Kubernetes Cluster
Developer->>Git: Push Code
Git->>CI: Webhook Trigger
CI->>CI: Code Checkout
CI->>CI: Run Tests
CI->>CI: Build Container
CI->>Registry: Push Image
Registry->>CD: Notify New Image
CD->>K8s: Deploy Application
K8s->>Developer: Deployment Status
流水线配置示例
# pipeline-config.yaml
apiVersion: devtron.ai/v1beta1
kind: Pipeline
metadata:
name: webapp-pipeline
spec:
triggers:
- type: git
branch: main
events: [push, pull_request]
stages:
- name: code-quality
steps:
- name: lint
image: node:16
commands:
- npm install
- npm run lint
- name: test
image: node:16
commands:
- npm test
- name: build
steps:
- name: docker-build
image: docker:20
commands:
- docker build -t $REGISTRY/webapp:$GIT_SHA .
- docker push $REGISTRY/webapp:$GIT_SHA
- name: security-scan
steps:
- name: trivy-scan
image: aquasec/trivy:latest
commands:
- trivy image $REGISTRY/webapp:$GIT_SHA
- name: deploy
steps:
- name: k8s-deploy
image: bitnami/kubectl:latest
commands:
- kubectl set image deployment/webapp webapp=$REGISTRY/webapp:$GIT_SHA
3.3 安全扫描集成
安全扫描工作流
stateDiagram-v2
[*] --> BuildImage
BuildImage --> ScanImage: 镜像构建完成
ScanImage --> VulnerabilitiesFound: 发现漏洞
ScanImage --> NoVulnerabilities: 无漏洞
VulnerabilitiesFound --> CriticalSeverity: 严重漏洞
VulnerabilitiesFound --> HighSeverity: 高风险漏洞
VulnerabilitiesFound --> MediumSeverity: 中风险漏洞
VulnerabilitiesFound --> LowSeverity: 低风险漏洞
CriticalSeverity --> BlockDeployment: 阻断部署
HighSeverity --> BlockDeployment: 阻断部署
MediumSeverity --> ReviewRequired: 需要审核
LowSeverity --> DeployAllowed: 允许部署
NoVulnerabilities --> DeployAllowed: 允许部署
ReviewRequired --> ManualApproval: 人工审批
ManualApproval --> DeployAllowed: 审批通过
ManualApproval --> BlockDeployment: 审批拒绝
Trivy 扫描配置
# security-scan-policy.yaml
apiVersion: security.devtron.ai/v1alpha1
kind: ScanPolicy
metadata:
name: production-scan-policy
spec:
severityThreshold: MEDIUM
ignoreUnfixed: false
allowedCVEs:
- CVE-2021-44228
- CVE-2021-45046
scanTypes:
- os
- library
failOn:
- CRITICAL
- HIGH
schedule: "0 2 * * *" # 每天凌晨2点执行
3.4 多集群管理
集群管理架构
classDiagram
class DevtronHub {
+manageClusters()
+syncConfigurations()
+auditLogs()
}
class KubernetesCluster {
+string name
+string provider
+string version
+string status
+deployApplication()
+getMetrics()
}
class Application {
+string name
+string namespace
+map[string]string labels
+deployToCluster()
+rollback()
}
DevtronHub "1" -- "*" KubernetesCluster : manages
KubernetesCluster "1" -- "*" Application : hosts
多集群配置示例
# multi-cluster-config.yaml
apiVersion: devtron.ai/v1beta1
kind: ClusterConfig
metadata:
name: production-clusters
spec:
clusters:
- name: us-east-1-prod
provider: aws
region: us-east-1
config:
server: https://api.us-east-1.example.com
certificateAuthorityData: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCg==
- name: eu-west-1-staging
provider: aws
region: eu-west-1
config:
server: https://api.eu-west-1.example.com
certificateAuthorityData: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCg==
deploymentPolicies:
- name: canary-deployment
clusters: [us-east-1-prod]
strategy:
type: Canary
steps:
- weight: 10
pause: 1h
- weight: 50
pause: 1h
- weight: 100
4. 高级特性深度解析
4.1 GitOps 工作流集成
ArgoCD 集成配置
# gitops-config.yaml
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: webapp-gitops
namespace: argocd
spec:
destination:
server: https://kubernetes.default.svc
namespace: production
source:
repoURL: https://gitcode.com/your-org/gitops-repo.git
targetRevision: HEAD
path: applications/webapp
helm:
valueFiles:
- values.yaml
parameters:
- name: image.tag
value: latest
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true
ignoreDifferences:
- group: apps
kind: Deployment
jsonPointers:
- /spec/replicas
4.2 金丝雀部署策略
金丝雀发布流程
timeline
title 金丝雀部署时间线
section 阶段一:准备
准备新版本镜像 : 构建并测试新版本
配置部署策略 : 设置流量分配比例
section 阶段二:初始发布
发布10%流量 : 监控关键指标
观察1小时 : 检查错误率和性能
section 阶段三:扩展发布
发布50%流量 : 扩大用户范围
观察2小时 : 深入监控系统表现
section 阶段四:全面发布
发布100%流量 : 完成全量部署
清理旧版本 : 资源回收和清理
金丝雀配置示例
# canary-config.yaml
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: webapp-canary
namespace: production
spec:
targetRef:
apiVersion: apps/v1
kind: Deployment
name: webapp
service:
port: 8080
targetPort: 8080
analysis:
interval: 1m
threshold: 5
maxWeight: 50
stepWeight: 10
metrics:
- name: request-success-rate
threshold: 99
interval: 1m
- name: request-duration
threshold: 500
interval: 1m
webhooks:
- name: load-test
url: http://flagger-loadtester.test/
timeout: 5s
metadata:
type: cmd
cmd: "hey -z 1m -q 10 -c 2 http://webapp.production/"
5. 运维监控和故障排除
5.1 监控仪表板配置
Grafana 监控面板
{
"dashboard": {
"title": "WebApp Monitoring",
"panels": [
{
"title": "CPU Usage",
"type": "graph",
"targets": [
{
"expr": "rate(container_cpu_usage_seconds_total{container=\"webapp\"}[5m])",
"legendFormat": "{{pod}}"
}
]
},
{
"title": "Memory Usage",
"type": "graph",
"targets": [
{
"expr": "container_memory_usage_bytes{container=\"webapp\"}",
"legendFormat": "{{pod}}"
}
]
},
{
"title": "HTTP Requests",
"type": "stat",
"targets": [
{
"expr": "rate(http_requests_total[5m])",
"legendFormat": "Requests/s"
}
]
}
],
"refresh": "30s",
"time": {
"from": "now-6h",
"to": "now"
}
}
}
5.2 告警规则配置
# alert-rules.yaml
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: webapp-alerts
namespace: monitoring
spec:
groups:
- name: webapp.rules
rules:
- alert: HighCPUUsage
expr: container_cpu_usage_seconds_total{container="webapp"} > 0.9
for: 5m
labels:
severity: critical
annotations:
summary: "High CPU usage on {{ $labels.pod }}"
description: "CPU usage is above 90% for 5 minutes"
- alert: HighMemoryUsage
expr: container_memory_usage_bytes{container="webapp"} / container_spec_memory_limit_bytes{container="webapp"} > 0.8
for: 5m
labels:
severity: warning
annotations:
summary: "High memory usage on {{ $labels.pod }}"
description: "Memory usage is above 80% of limit for 5 minutes"
- alert: HTTPErrorRate
expr: rate(http_requests_total{status=~\"5..\"}[5m]) / rate(http_requests_total[5m]) > 0.05
for: 2m
labels:
severity: critical
annotations:
summary: "High HTTP error rate"
description: "HTTP 5xx error rate is above 5% for 2 minutes"
6. 最佳实践和性能优化
6.1 资源优化配置
| 资源类型 | 推荐配置 | 说明 |
|---|---|---|
| CPU Request | 100-250m | 保证基本运行需求 |
| CPU Limit | 500-1000m | 防止资源饥饿 |
| Memory Request | 256-512Mi | 保证基本内存需求 |
| Memory Limit | 1-2Gi | 防止内存泄漏影响 |
| Replicas | 2-3 | 保证高可用性 |
| HPA配置 | CPU 70% | 自动扩缩容阈值 |
6.2 安全最佳实践
# security-best-practices.yaml
apiVersion: security.devtron.ai/v1alpha1
kind: SecurityPolicy
metadata:
name: production-security-policy
spec:
podSecurity:
runAsNonRoot: true
runAsUser: 1000
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
networkPolicy:
ingress:
- from:
- podSelector:
matchLabels:
app: frontend
ports:
- protocol: TCP
port: 8080
egress:
- to:
- ipBlock:
cidr: 0.0.0.0/0
ports:
- protocol: TCP
port: 53
- protocol: UDP
port: 53
imagePolicy:
allowedRegistries:
- "registry.example.com"
requiredLabels:
- "security-scan-passed=true"
maxImageAge: 168h # 7天
7. 总结和后续学习
通过本
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0102
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
452
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705